首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eero Asmala  Laura Saikku 《Ambio》2010,39(2):126-135
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.  相似文献   

2.
The external phosphorus (P) loading has been halved, but the P content in the water column and the area of anoxic bottoms in Baltic proper has increased during the last 30 years. This can be explained by a temporary internal source of dissolved inorganic phosphorus (DIP) that is turned on when the water above the bottom sediment becomes anoxic. A load-response model, explaining the evolution from 1980 to 2005, suggests that the average specific DIP flux from anoxic bottoms in the Baltic proper is about 2.3 g P m−2 year−1. This is commensurable with fluxes estimated in situ from anoxic bottoms in the open Baltic proper and from hydrographic data in the deep part of Bornholm Basin. Oxygenation of anoxic bottoms, natural or manmade, may quickly turn off the internal P source from anoxic bottoms. This new P-paradigm should have far-reaching implications for abatement of eutrophication in the Baltic proper.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0441-3) contains supplementary material, which is available to authorized users.  相似文献   

3.
Denitrification in the river estuaries of the northern Baltic Sea   总被引:3,自引:0,他引:3  
Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 micromol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 micromol N m(-2) d(-1) to 910 micromol N m(-2) d(-1) and from 230 micromol N m(-2) d(-1) to 320 micromol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and the estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.  相似文献   

4.
Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011–2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069–2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air–sea gas exchange and “bulk” (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year?1 for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year?1 for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.  相似文献   

5.
Vertical diffusivity and oxygen consumption in the basin water, the water below the sill level at about 59 m depth, have been estimated by applying budget methods to monitoring data from hydrographical stations BY4 and BY5 for periods without water renewal. From the vertical diffusivity, the mean rate of work against the buoyancy forces below 65 m depth is estimated to about 0.10 mW m−2. This is slightly higher than published values for East Gotland Sea. The horizontally averaged vertical diffusivity κ can be approximated by the expression κ = a0N−1 where N is the buoyancy frequency and a0 ≈ 1.25 × 10−7 m2 s−2, which is similar to values for a0 used for depths below the halocline in Baltic proper circulation models for long-term simulations. The contemporary mean rate of oxygen consumption in the basin water is about 75 g O2 m−2 year−1, which corresponds to an oxidation of 28 g C m−2 year−1. The oxygen consumption in the Bornholm Basin doubled from the 1970s to the 2000s, which qualitatively explains the observed increasing frequency and vertical extent of anoxia and hypoxia in the basin water in records from the end of the 1950s to present time. A horizontally averaged vertical advection–diffusion model of the basin water is used to calculate the effects on stratification and oxygen concentration by a forced pump-driven vertical convection. It is shown that the residence time of the basin water may be reduced by pumping down and mixing the so-called winter water into the deepwater. With the present rate of oxygen consumption, a pumped flux of about 25 km3 year−1 would be sufficient to keep the oxygen concentration in the deepwater above 2 mL O2 L−1.  相似文献   

6.
Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.  相似文献   

7.
International regulation of the emission of acidic sulphur and nitrogen oxides from commercial shipping has focused on the risks to human health, with little attention paid to the consequences for the marine environment. The introduction of stricter regulations in northern Europe has led to substantial investment in scrubbers that absorb the sulphur oxides in a counterflow of seawater. This paper examines the consequences of smokestack and scrubber release of acidic oxides in the Baltic Sea according to a range of scenarios for the coming decades. While shipping is projected to become a major source of strong acid deposition to the Baltic Sea by 2050, the long-term effect on the pH and alkalinity is projected to be significantly smaller than estimated from previous scoping studies. A significant contribution to this difference is the efficient export of surface water acidification to the North Sea on a timescale of 15–20 years.  相似文献   

8.
Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km2 before 1950 to >60 000 km2 since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.  相似文献   

9.
Coastal dunes around the Baltic Sea have received small amounts of atmospheric nitrogen and are rather pristine ecosystems in this respect. In 19 investigated dune sites the atmospheric wet nitrogen deposition is 3-8 kg N ha−1 yr−1. The nitrogen content of Cladonia portentosa appeared to be a suitable biomonitor of these low to medium deposition levels. Comparison with EMEP-deposition data showed that Cladonia reflects the deposition history of the last 3-6 years. With increasing nitrogen load, we observed a shift from lichen-rich short grass vegetation towards species-poor vegetation dominated by the tall graminoid Carex arenaria. Plant species richness per field site, however, does not decrease directly with these low to medium N deposition loads, but with change in vegetation composition. Critical loads for acidic, dry coastal dunes might be lower than previously thought, in the range of 4-6 kg N ha−1 yr−1 wet deposition.  相似文献   

10.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

11.
We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0435-1) contains supplementary material, which is available to authorized users.  相似文献   

12.
The environmental degradation of lakes in China has become increasingly serious over the last 30 years and eutrophication resulting from enhanced nutrient inputs is considered a top threat. In this study, a quasi-mass balance method, net anthropogenic N inputs (NANI), was introduced to assess the human influence on N input into three typical Chinese lake basins. The resultant NANI exceeded 10 000 kg N km−2 year−1 for all three basins, and mineral fertilizers were generally the largest sources. However, rapid urbanization and shrinking agricultural production capability may significantly increase N inputs from food and feed imports. Higher percentages of NANI were observed to be exported at urban river outlets, suggesting the acceleration of NANI transfer to rivers by urbanization. Over the last decade, the N inputs have declined in the basins dominated by the fertilizer use but have increased in the basins dominated by the food and feed import. In the foreseeable future, urban areas may arise as new hotspots for nitrogen in China while fertilizer use may decline in importance in areas of high population density.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0638-8) contains supplementary material, which is available to authorized users.  相似文献   

13.
In the scientific literature, few valuations of biodiversity and ecosystem services following the impacts of toxicity are available, hampered by the lack of ecotoxicological documentation. Here, tributyltin is used to conduct a contingent valuation study as well as cost–benefit analysis (CBA) of measures for improving the environmental status in Swedish coastal waters of the Baltic Sea. Benefits considering different dimensions when assessing environmental status are highlighted and a quantitative environmental assessment framework based on available technology, ecological conditions, and economic valuation methodology is developed. Two scenarios are used in the valuation study: (a) achieving good environmental status by 2020 in accordance with EU legislation (USD 119 household−1 year−1) and (b) achieving visible improvements by 2100 due to natural degradation (USD 108 household−1 year−1) during 8 years. The later scenario was used to illustrate an application of the assessment framework. The CBA results indicate that both scenarios might generate a welfare improvement.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0682-4) contains supplementary material, which is available to authorized users.  相似文献   

14.
Plant and soil bio(chemical) indicators are increasingly used to provide information on N deposition inputs and effects in a wide range of ecosystem types. However, many factors, including climate and site management history, have the potential to influence bioindicator relationships with N due to nutrient export and changing vegetation nutrient demands. We surveyed 33 heathlands in England, along a gradient of background N deposition (7.2–24.5 kg ha−1 year−1), using Calluna vulgaris growth phase as a proxy for time since last management. Our survey confirmed soil nutrient accumulation with increasing time since management. Foliar N and phosphorus (P) concentrations in pioneer- and mature-phase vegetation significantly increased with N deposition. Significant interactions between climate and N deposition were also evident with, for example, higher foliar P concentrations in pioneer-phase vegetation at sites with higher temperatures and N deposition rates. Although oxidized N appeared more significant than reduced N, overall there were more, stronger relationships with total N deposition; suggesting efforts to control all emissions of N (i.e., both oxidized and reduced forms) will have ecological benefits.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0529-4) contains supplementary material, which is available to authorized users.  相似文献   

15.
Laboratory studies suggest that the cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) will persist in the aquatic environment and bioaccumulate in fish. Here these cVMS were measured in herring collected in the Swedish waters of the Baltic Sea and the North Sea and in grey seals from the Baltic Proper. D4, D5, and D6 were present in herring muscle at concentrations around 10, 200, and 40 ng g−1 lipid weight, respectively. The ratio of these concentrations was similar to the relative magnitude of estimated emissions to water, suggesting that the efficiency of overall transfer through the environment and food web was similar (within a factor 2–3) for the three chemicals. The concentrations of D5 and D6 were similar in herring caught in the highly populated Baltic Proper and in the less populated Bothnian Sea and Bothnian Bay. The D4 concentrations were lower at the most remote northern station, suggesting that D4 is less persistent than D5 and D6. Herring from the North Sea had lower levels of all three chemicals. The concentrations of D4, D5 and D6 in grey seal blubber were lower than the lipid normalized concentrations in herring, indicating that they do not biomagnify in grey seals.  相似文献   

16.
PCDD/F contamination of the Baltic Sea has resulted in the European Union imposing restrictions on the marketing of several fish species. Atmospheric deposition is the major source of PCDD/Fs to the Baltic Sea, and hence there is a need to identify the source regions of the PCDD/Fs in ambient air over the Baltic Sea. A novel monitoring strategy was employed to address this question. During the winter of 2006–2007 air samples were collected in Aspvreten (southern Sweden) and Pallas (northern Finland). Short sampling times (24 h) were employed and only samples with stable air mass back trajectories were selected for analysis of the 2,3,7,8-substituted PCDD/F congeners. The range in the PCDD/F concentrations from 40 samples collected at Aspvreten was a factor of almost 50 (range 0.6–29 fg TEQ/m3). When the samples were grouped according to air mass origin into seven compass sectors, the variability was much lower (typically less than a factor of 3). This indicates that air mass origin was the primary source of the variability. The contribution of each sector to the PCDD/F contamination over the Baltic Sea during the winter half year of 2006/2007 was calculated from the average PCDD/F concentration for each sector and the frequency with which the air over the Baltic Sea came from that sector. Air masses originating from the south–southwest, south–southeast and east segments contributed 65% of the PCDDs and 75% of the PCDFs. Strong correlations were obtained between the concentrations of most of the PCDD/F congeners and the concentration of soot. These correlations can be used to predict the PCDD/F concentrations during the winter half year from inexpensive soot measurements.  相似文献   

17.
Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.  相似文献   

18.
Jäntti H  Hietanen S 《Ambio》2012,41(2):161-169
Primary production in the eutrophic Baltic Sea is limited by nitrogen availability; hence denitrification (natural transformation of nitrate to gaseous N2) in the sediments is crucial in mitigating the effects of eutrophication. This study shows that dissimilatory nitrate reduction to ammonium (DNRA) process, where nitrogen is not removed but instead recycled in the system, dominates nitrate reduction in low oxygen conditions (O2 <110 μM), which have been persistent in the central Gulf of Finland during the past decade. The nitrogen removal rates measured in this study show that nitrogen removal has decreased in the Gulf of Finland compared to rates measured in mid-1990s and the decrease is most likely caused by the increased bottom water hypoxia.  相似文献   

19.
This seven-year survey was primarily targeted to quantification of production of nodularin-R (NOD-R), a cyclic pentapeptide hepatotoxin, in Baltic Sea cyanobacteria waterblooms. Additionally, NOD-R and microcystin-LR (MC-LR; a cyclic heptapeptide toxin) sedimentation rates and NOD-R sediment storage were estimated. NOD-R production (70-2450 μg m−3; ∼1 kg km−2 per season) and sedimentation rates (particles; 0.03-5.7 μg m−2 d−1; ∼0.3 kg km−2 per season) were highly variable over space and time. Cell numbers of Nodularia spumigena did not correlate with NOD-R quantities. Dissolved NOD-R comprised 57-100% of total NOD-R in the predominantly senescent, low-intensity phytoplankton blooms and seston. Unprecedentedly intensive MC-LR sedimentation (0.56 μg m−2 d−1) occurred in 2004. Hepatotoxin sedimentation rates highly exceeded those of anthropogenic xenobiotics. NOD-R storage in surficial sediments was 0.4-20 μg kg−1 (∼0.1 kg km−2). Loss of NOD-R within the chain consisting of phytoplankton, seston and soft sediments seemed very effective.  相似文献   

20.
In this article we summarize the current knowledge of Baltic Sea cyanobacteria, focusing on diversity, toxicity, and nitrogen fixation in the filamentous heterocystous taxa. We also review the recent results of our microbial diversity studies in planktonic and benthic habitats in the Baltic Sea. Based on molecular analyses, we have improved the understanding of cyanobacterial population structure by assessing genetic diversity within species that are morphologically inseparable. Moreover, we have studied microbial functions such as toxin production and nitrogen fixation in situ under different environmental conditions. Phosphorus limitation of bloom-forming, nitrogen-fixing cyanobacteria was clearly verified, emphasizing the importance of continuous efforts to reduce this element in the Baltic Sea. We have designed a rapid and reliable detection method for the toxic cyanobacterium Nodularia spumigena, which can be used to study bloom formation of this important toxin producer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号