首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用逆流洗涤方式有效减轻酸污染。含铜酞菁废水采用铁炭微电解预处理技术 ,树脂废水采用物化预处理技术 ,再通过厌氧水解———SBR好氧生化处理技术的工艺流程 ,成功地治理了该有机化工废水 ,出水达到国家排放标准  相似文献   

2.
臭氧氧化预处理难降解农药废水的研究   总被引:4,自引:2,他引:2  
采用臭氧氧化技术预处理脲类农药生产废水,调节废水pH至弱碱,在此基础上考察废水臭氧氧化预处理的影响因素,得出最佳预处理条件:COD为200 mg/L,初始pH为11.3,臭氧投加量为14.2 mg/L。连续预处理180 min后,可生化性从0.12提高到0.58,说明该项技术可大大提高脲类农药废水的可生化性。  相似文献   

3.
味精废水培养苏云金芽孢杆菌中的预处理研究   总被引:5,自引:0,他引:5  
首先对高浓度味精废水主要成分进行了测定和在自来水添加不同浓度的无机盐模拟味精废水,并与高浓度味精废水培养苏云金芽孢杆菌进行对比实验,确定了味精废水中影响苏云金芽孢菌生长的主要因素是废水中存在高浓度的氨氮和硫酸根,其中氨氮的影响大于硫酸根。在此结论基础上,研究了味精废水预处理材料,温度,时间等对苏云金芽孢杆菌培养的影响,并最终测定了最佳预处理工艺条件。  相似文献   

4.
制药废水预处理技术探索   总被引:9,自引:0,他引:9  
采用CAF涡凹气浮装置对制药废水进行预处理,考察了pH,温度,药剂对出水效果的影响,中试运行结果表明了CAF涡凹气浮在制药废水预处理方面的良好效果和应用前景。  相似文献   

5.
工艺中将碱性皂化废水经预处理后用泵输入锅炉湿式除尘系统进行燃煤烟气脱硫除尘,流出废水经处理后循环回用。该治理工艺采用以废治废,综合利用的方法治理皂化废水和锅炉烟气,既消除了污染又充分利用了碱性废水和锅炉烟道气作为有用的资源,取得了较好的环境效益和经济效益。  相似文献   

6.
燃煤锅炉烟气在碱性印染废水治理中的应用   总被引:3,自引:0,他引:3  
介绍了当前国内利用燃煤锅炉烟气和对印染废水进行了预处理的技术,论述朝气SO2浓度,气水比,温度对印染废水预处理效果的影响,并对其进行了技术经济分析。  相似文献   

7.
针对水质稳定剂生产过程中产生高浓度的甲醇废水,采用精馏法预处理甲醇废水,一方面降低废水COD浓度,另一方面回收甲醇,工程实践表明:该法可以在相对较低的运动费用下,保证COD的去除率在99.5%以上,为后续好氧生物降解创造有利条件。  相似文献   

8.
微电解法预处理大蒜废水试验研究   总被引:2,自引:0,他引:2  
王娟  范迪 《环境工程学报》2008,2(7):951-954
分析了大蒜废水的特点,探讨了微电解法预处理大蒜废水的可行性,并采用微电解一接触氧化工艺分别对大蒜废水和大蒜蔬菜混合废水进行了试验研究.结果表明,微电解法预处理大蒜废水是可行的,提高了废水的可生化性,微电解较佳停留时间为20 min,微电解-接触氧化工艺处理出水水质为COD≤100 mg/L.  相似文献   

9.
对AB工艺处理毛纺废水进行了系统研究,在预处理和生物吸附处理阶段作了一些技术改进,并结合江苏箭鹿集团第一毛纺厂处理毛纺废水的工程实例,对其工作原理、工艺流程、设计参数以及效益等作了详细的分析,实践证明:运用效果显著。  相似文献   

10.
为了识别头孢抗生素生产废水中的主要污染物,掌握其水质特点,对头孢抗生素中间体合成废水进行了物质组成分析。水样取自天津某头孢生产企业废水处理系统的进水和出水。采用气相色谱-质谱联用(GC-MS)技术对污染物进行检测,经色谱柱分离后将各组分的质谱图与NIST08数据库对比、定性,确定了样品预处理方法和GC-MS分析的条件。研究结果表明,头孢中间体合成废水中存在7大类30余种化合物,通过对比废水处理系统进出水组成,确定了含N多环和杂环类化合物为最难降解的污染物,为此类废水的物理强化预处理和深度处理提供了依据。  相似文献   

11.
臭氧氧化降解含染料废水的研究   总被引:6,自引:0,他引:6  
探讨了臭氧氧化技术处理染料(酸性、直接、活性、分散和还原颜料)模拟废水的影响因素——pH值、初始浓度和臭氧含量等对其的影响;臭氧氧化能提高染料废水的可生化性,可用来作为高浓度染料废水的预处理手段。  相似文献   

12.
采用4种廉价的生物质材料(水葫芦、柚子皮、木屑、核桃壳)用于餐饮废水的预处理。通过静态烧杯实验,研究了各生物质材料预处理废水的效果及最佳处理条件。结果表明,生物质材料对废水中COD的去除率均在45%以上,油脂吸附量为4~16mg/g,最优吸附材料为水葫芦,COD去除率达65%,油脂吸附量为16mg/g;水葫芦和柚子皮的最佳处理条件为:粒径〈0.2mm,投加量为20g/L,废水pH为4,处理时间为2h,温度为20℃;木屑和核桃壳的最佳实验条件为:粒径〈0.2mm,投加量为28g/L,pH为2,处理时间为2.5h,温度为20℃。生物质对餐饮废水的预处理,为废水中大量有机物和废弃油脂的去除提供了新思路和途径。  相似文献   

13.
Fenton氧化法预处理难降解高浓度化工废水   总被引:2,自引:0,他引:2  
难降解高浓度化工废水直接采用生化法处理较为困难,为了减少后续水处理系统处理难降解物质的量,采用Fenton氧化法对难降解高浓度化工废水进行预处理且非常有效.重点考察了pH、投药比例、投药量以及反应时间对Fenton氧化法预处理高浓度化工废水的影响.经过实验得出最佳条件:pH为3.5,投药比例为1.0 mL 50%(质量...  相似文献   

14.
首先对高浓度味精废水主要成分进行了测定和在自来水中添加不同浓度的无机盐模拟味精废水,并与高浓度味精废水培养苏云金芽孢杆菌进行对比实验,确定了味精废水中影响苏云金芽孢杆菌生长的主要因素是废水中存在高浓度的氨氮和硫酸根,其中氨氮的影响大于硫酸根。在此结论基础上,研究了味精废水预处理材料、温度、时间等对苏云金芽孢杆菌培养的影响,并最终确定了最佳预处理工艺条件。  相似文献   

15.
各种影响因子对电解法预处理医药废水的影响研究   总被引:2,自引:0,他引:2  
探讨了电解法预处理医药废水时停留时间、电解电压、废水初始浓度、温度和废水pH值等影响因子对去除色度、COD和提高废水可生化性等处理效果的影响,并考察了其应用于工业实际废水处理的可行性。实验结果表明:电解法更适合高浓度医药废水的处理,色度的去除率可达到90%以上;电解时间宜控制在40-60min;电解电压越高,废水COD和色度去除效果越好;在实验温度范围内,温度对色度和COD去除率的影响不大;废水pH值为7.5时电解效果最佳,工程运用宜控制在6—9之间。  相似文献   

16.
铁炭微电解-ClO2催化氧化处理酮康唑废水   总被引:4,自引:1,他引:4  
采用铁炭微电解-ClO2催化氧化串联工艺对以甲苯、溴化钠、三乙胺、苯甲酸钠、米唑、二甲基亚酚、酮康唑母液等物质为主的酮康唑废水进行预处理后,COD去除率达到75%以上。经过预处理的废水再按一定比例与冲洗废水混合,经PAC—SBR生化处理后,可使出水的COD、色度等指标达到《污水综合排放标准》(GB8978-1996)中的一级标准。  相似文献   

17.
Fenton试剂法预处理发酵甘油生产提取废水   总被引:3,自引:0,他引:3  
采用Fenton试剂预处理高浓度难降解发酵法甘油生产提取废水。研究了pH、Fe^2 、H2O2、反应时间和H2O2投加次数对废水COD去除效果的影响。结果表明,通过Fenton试剂氧化可使废水中的COD值从13500mg/L降至4030mg/L,COD去除率达到70.1%。废水的BOD5/COD值从0.202提高至0.568,可生化性得到较大提高,为后续处理创造了条件。研究成果为发酵法甘油生产提取废水的预处理提供了一种非常有效的方法。  相似文献   

18.
利用印染厂碱减量废水脱除烟气中SO2模拟试验研究   总被引:1,自引:0,他引:1  
介绍了化纤印染厂坯布前处理工序产生的碱减量废水作为锅炉烟气SO2的脱硫剂的试验结果,分析了碱减量废水脱硫反应过程及其为碱减量废水综合治理提出了一种新的预处理方法。  相似文献   

19.
ABR反应器预处理综合印染废水研究   总被引:7,自引:2,他引:5  
采用ABR反应器预处理难降解印染废水中试研究。结果表明,ABR反应器最佳水力停留时间(HRT)为24 h,ABR反应器稳定运行4个月,当进水COD平均值为769.4 mg/L(最高1 060 mg/L,最低590.6 mg/L),色度平均值为351倍时,出水COD和色度分别为424.2 mg/L和83倍,去除率分别为44.5%和76.1%。印染废水B/C由0.27提高到0.42,废水可生化性明显改善。  相似文献   

20.
采用高温烧结型微电解填料预处理煤制油废水,通过正交实验研究了初始pH、微电解时间及曝气强度等对废水的预处理影响。结果表明,微电解影响因素从大到小依次为:微电解时间pH曝气强度;微电解预处理煤制油废水的最佳工艺参数为:初始pH 4.0,微电解90 min,气水比3∶1充氧曝气;通过平行实验,COD平均去除率及出水水质分别为54.7%和1 773 mg/L,废水生物毒性指标EC50由原水12.5%的高毒性转化成48.3%的中毒性,为后续生化系统的正常运行提供了有利条件,是预处理煤制油废水的有效方法之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号