首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose  

Adsorption of metals (Pb, Cd, Cu, Ni, Zn) to TiO2 nanoparticles and bulk particles was examined for use as a contaminant removal substrate as a function of particle size, sorbent concentration, and exhaustion.  相似文献   

2.

In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L−1, Cr 4 μg L−1, Ni 25 μg L−1, and Zn 30 μg L−1; of treatment 2 (T2) were Pb 70 μg L−1, Cr 70 μg L−1, Ni 70 μg L−1, and Zn 70 μg L−1; and of treatment 3 (T3) were Pb 1000 μg L−1, Cr 1000 μg L−1, Ni 500 μg L−1, and Zn 100 μg L−1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  相似文献   

3.

Purpose  

Increases in dissolved organic carbon (DOC) concentrations have been reported in surface waters worldwide in the last 10 to 20 years. The causes behind these increases have been attributed to many factors, including climate change and decreasing depositions of atmospheric sulphate ( \textSO42 - {\text{SO}}_4^{{{2} - }} ). Trends in DOC concentrations and their potential causal factors were examined in a network of 30 lakes lying in undisturbed temperate and boreal catchments in the province of Quebec, Canada.  相似文献   

4.
Microbe-assisted phytoremediation has been considered as a promising measure for the remediation of heavy metal-polluted soils. In this study, a metal-tolerance and plant growth-promoting endophytic bacterium JN6 was firstly isolated from roots of Mn-hyperaccumulator Polygonum pubescens grown in metal-contaminated soil and identified as Rahnella sp. based on 16S rDNA gene sequence analysis. Strain JN6 showed very high Cd, Pb and Zn tolerance and effectively solubilized CdCO3, PbCO3 and Zn3(PO4)2 in culture solution. The isolate produced plant growth-promoting substances such as indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and also solubilized inorganic phosphate. Based upon its ability in metal tolerance and solubilization, the isolate JN6 was further studied for its effects on the growth and accumulation of Cd, Pb and Zn in Brassica napus (rape) by pot experiments. Rape plants inoculated with the isolate JN6 had significantly higher dry weights, concentrations and uptake of Cd, Pb and Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The isolate also showed a high level of colonization in tissue interior of rapes. The present results demonstrated that Rahnella sp. JN6 is a valuable microorganism, which can cost-effectively improve the efficiency of phytoremediation in soils contaminated by Cd, Pb and Zn.  相似文献   

5.
Y. Xu   《Chemosphere》2001,43(8):1281
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

6.

Introduction  

Isotope ratios of lead (207Pb/206Pb and 208Pb/206Pb) in Japanese women’s hair of the twentieth century were measured to evaluate lead contamination of human proximate environment of those days.  相似文献   

7.
Relative rate techniques were used to determine k(Cl + CF3CFCFCF3) = (7.27 ± 0.88) × 10?12, k(Cl + CF3CF2CFCF2) = (1.79 ± 0.41) × 10?11, k(OH + CF3CFCFCF3) = (4.82 ± 1.15) × 10?13, and k(OH + CF3CF2CFCF2) = (1.94 ± 0.27) × 10?12 cm3 molecule?1 s?1 in 700 Torr of air or N2 diluent at 296 K. The chlorine atom- and OH radical-initiated oxidation of CF3CFCFCF3 in 700 Torr of air gives CF3C(O)F in molar yields of 196 ± 11 and 218 ± 20%, respectively. Chlorine atom-initiated oxidation of CF3CF2CFCF2 gives molar yields of 97 ± 9% CF3CF2C(O)F and 97 ± 9% COF2. OH radical-initiated oxidation of CF3CF2CFCF2 gives molar yields of 110 ± 15% CF3CF2C(O)F and 99 ± 8% COF2. The atmospheric fate of CF3CF2C(O)F and CF3C(O)F is hydrolysis to give CF3CF2C(O)OH and CF3C(O)OH. The atmospheric lifetimes of CF3CFCFCF3 and CF3CF2CFCF2 are determined by reaction with OH radicals and are approximately 24 and 6 days, respectively. The contribution of CF3CFCFCF3 and CF3CF2CFCF2 to radiative forcing of climate change will be negligible.  相似文献   

8.
Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 μg m−3 for HNO3, and 2.6-5.2 μg m−3 for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha−1 for maximum values, and 0.4-8 kg N ha−1 for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3.  相似文献   

9.
Colloid-facilitated transport of lead (Pb) was explored in a natural chalk fracture with an average equivalent hydraulic aperture of 139 μm. Tracer solution was prepared by adding montmorillonite (100 mg L?1) and/or humic acid (HA) (10 mg L?1) to modified artificial rainwater containing dissolved Pb (21.4 mg Pb L?1), naturally precipitated PbCO3 particles (16.4 mg Pb L?1) and LiBr (39.0 mg L?1). We found that Pb is only mobile when associated with colloids. PbCO3 particles were not mobile in the fracture. The addition of HA to the montmorillonite suspension increased the suspension's mobility and therefore promoted the colloid-facilitated transport of Pb. The increases in pH and sodium absorption ratio induced by the chalk-tracer solution interactions appeared to increase the dispersion and mobilization of colloids entering the fracture. The dominant colloid-facilitated transport of Pb reported in this study has significant implications for risk assessment of Pb mobility in fractured rocks.  相似文献   

10.
Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L−1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m−1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and rejection follows the order LFC-1 (>90%) > MX07 (25–95%)  ESNA (30–90%) > GM (3–47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and rejection follows the order CaCl2 < KCl  K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding (71–74%) than the ESNA NF membrane (11–56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (, , and ) the rejection (38–56%) is fairly proportional to the ri,s/rp ratio (0.32–0.62) for the ESNA membrane.  相似文献   

11.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   

12.
Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at “natural” pH (6.5) containing 0.6 mg L−1 of Fe3+ and 10 mg L−1 of H2O2. The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L−1 of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24 h in the dark.  相似文献   

13.

Background, aim and scope  

Photocatalytic oxidation using UV irradiation of TiO2 has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e cb) with electron holes (hvb+) on the irradiated TiO2 surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO42−) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO2 photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e cb and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate.  相似文献   

14.

Purpose  

The purpose this research is to investigate the interaction of Cr(VI) species, present as Cr2O72−, at ambient temperature with brick clay pre-fired at different temperatures.  相似文献   

15.

Objective  

The present work was carried out to investigate the effects of temperature, initial pH, initial concentration, and contact time on the biosorption of lead (Pb) and cadmium (Cd) by modified stalk sponge of Zea mays using a batch technique.  相似文献   

16.

Introduction  

In this study, we provide strategies for detecting and quantifying the structural isomers of polyfluorinated di- and tri-alkyl surfactants (PFAS) by mass spectrometry (MS). We specifically investigate polyfluorinated dialkylated phosphate ester surfactants (x:2/y:2 diPAPS, (F(CF2) x CH2CH2O-P(O)(O)-OCH2CH2(CF2) y F)) and their thioether analogues (x:2/y:2 S-diPAPS, F(CF2) x CH2CH2SCH2-C[CH2O)2P(O)(O)]-CH2SCH2CH2(CF2) y F), which are used for industrial applications, such as oil- and water-repellent coatings on paper and board. DiPAPS have been found in human blood and are metabolised to the persistent perfluoroalkyl carboxylic acids (PFCA) in rats.  相似文献   

17.
Potential exposures from ground-level pyrotechnics were assessed by air monitoring and developing emission factors. Total particulate matter, copper and SO2 exposures exceeded occupational health guidelines at two outdoor performances using consumer pyrotechnics. Al, Ba, B, Bi, Mg, Sr, Zn, and aldehyde levels were elevated, but did not pose a health hazard based on occupational standards. Emission factors for total particulate matter, metals, inorganic ions, aldehydes, and polyaromatic hydrocarbons (PAHs) were determined for seven ground-supported pyrotechnics through air sampling in an airtight room after combustion. Particle generation ranged from 5 to 13% of the combusted mass. Emission factors (g Kg?1) for metals common to pyrotechnics were also high: K, 23–45; Mg, 1–7; Cu, 0.05–7; and Ba, 0.03–6. Pb emission rates of 1.6 and 2.7% of the combusted mass for two devices were noteworthy. A high correlation (r2 ≥ 0.89) between metal concentrations in pyrotechnic compositions and emission factors were noted for Pb, Cr, Mg, Sb, and Bi, whereas low correlations (r2 ≤ 0.1) were observed for Ba, Sr, Fe, and Zn. This may be due to the inherent heterogeneity of multi-effect pyrotechnics. The generation of inorganic nitrogen in both the particulate (NO2?, NO3?) and gaseous (NO, NO2) forms varied widely (<0.1–1000 mg Kg?1). Aldehyde emission factors varied by two orders of magnitude even though the carbon source was carbohydrates and charcoal for all devices: formaldehyde (<7.0–82 mg Kg?1), acetaldehyde (43–210 mg Kg?1), and acrolein (1.9–12 mg Kg?1). Formation of lower molecular weight PAHs such as naphthalene and acenaphthylene were favored, with their emission factors being comparable to that from the combustion of household refuse and agricultural debris. Ba, Sr, Cu, and Pb had emission factors that could produce exposures exceeding occupational exposure guidelines. Sb and unalloyed Mg, which are banned from consumer fireworks in the US, were present in significant amounts.  相似文献   

18.
Among the emerging literature addressing the biological effects of nanoparticles, very little information exists, particularly on aquatic organisms, that evaluates nanoparticles in comparison to non-nanocounterparts. Therefore, the potential effects of nano-scale and non-nano-scale TiO2 and ZnO on the water flea, Daphnia magna, were examined in 48-h acute toxicity tests using three different test media, several pigment formulations – including coated nanoparticles – and a variety of preparation steps. In addition, a 21-d chronic Daphnia reproduction study was performed using coated TiO2 nanoparticles. Analytical ultracentrifugation analyses provided evidence that the nanoparticles were present in a wide range of differently sized aggregates in the tested dispersions. While no pronounced effects on D. magna were observed for nano-scale and non-nano-scale TiO2 pigments in 19 of 25 acute (48-h) toxicity tests (EC50 > 100 mg L−1), six acute tests with both nano- and non-nano-scale TiO2 pigments showed slight effects (EC10, 0.5–91.2 mg L−1). For the nano-scale and non-nano-scale ZnO pigments, the acute 48-h EC50 values were close to the 1 mg L−1 level, which is within the reported range of zinc toxicity to Daphnia. In general, the toxicity in the acute tests was independent of particle size (non-nano-scale or nano-scale), coating of particles, aggregation of particles, the type of medium or the applied pre-treatment of the test dispersions. The chronic Daphnia test with coated TiO2 nanoparticles demonstrated that reproduction was a more sensitive endpoint than adult mortality. After 21 d, the NOEC for adult mortality was 30 mg L−1 and the NOEC for offspring production was 3 mg L−1. The 21-d EC10 and EC50 values for reproductive effects were 5 and 26.6 mg L−1, respectively. This study demonstrates the utility of evaluating nanoparticle effects relative to non-nano-scale counterparts and presents the first report of chronic exposure to TiO2 nanoparticles in D. magna.  相似文献   

19.

Singlet oxygen (1O2), hydroxyl radicals (OH), and excited triplet states of organic matter (3OM*) play a key role in the degradation of pollutants in aquatic environments. The formation rates and quantum yields (Φ) of these reactive intermediates (RI) through photosensitized reactions of dissolved organic matter (DOM) have been reported in the literature for decades. Urban biowaste-derived substances (UW-BOS), a form of organic matter derived from vegetative and urban waste, have recently been shown to be efficient sensitizers in the photo-degradation of different contaminants. Nevertheless, no quantitative measurements of photo-oxidant generation by UW-BOS have been reported. In this study, the formation quantum yields of 1O2 and OH, as well as quantum yield coefficients of TMP degradation (indicative of 3OM* formation), were quantified for two UW-BOS samples, under 254-nm UV radiation or simulated sunlight and compared to a DOM standard from the Suwanee River (SRNOM). Values of Φ for UW-BOS samples ranged from Φ(+1O2) = 8.0 to 8.8 × 10−3, Φ(+OH) = 4.1 to 4.3 × 10−6, and f TMP = 1.22 to 1.23 × 102 L Einstein−1 under simulated sunlight and from Φ(+1O2) = 1.4 to 2.3 × 10−2, Φ(+OH) = 1.3 to 3.5 × 10−3, and f TMP = 3.3 to 3.9 × 102 L Einstein−1 under UV. Although UW-BOS are not necessarily better than natural DOM regarding photosensitizing properties, they do sensitize the production of RI and could potentially be used in engineered treatment systems.

  相似文献   

20.
Background, aim, and scope  The adverse environmental impacts of chlorinated hydrocarbons on the Earth’s ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C–F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF3CF2CF2OCH3) (1) and its isomer CF3CF2CF2CH2OH (2). Materials and methods  Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube–mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266–333 and 298–353 K for reactions of HFE-7000 and CF3CF2CF2CH2OH, respectively. Results  The measured room temperature rate constants were k(Cl+CF3CF2CF2OCH3) = (1.24 ± 0.28) × 10−13 cm3 molecule−1 s−1and k(Cl+CF3CF2CF2CH2OH) = (8.35 ± 1.63) × 10−13 cm3 molecule−1 s−1 (errors are 2σ + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k 1(266–333 K) = (6.1 ± 3.8) × 10−13exp[−(445 ± 186)/T] cm3 molecule−1 s−1 and k 2(298–353 K) = (1.9 ± 0.7) × 10−12exp[−(244 ± 125)/T] cm3 molecule−1 s−1 (errors are 2σ). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.95 ± 0.38 and 0.97 ± 0.16 (errors are 2σ) were obtained for CF3CF2CF2OCH3 and CF3CF2CF2CH2OH, respectively. Discussion  The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into account the error limits. Comparing the obtained results at room temperature, k 1 and k 2, HFE-7000 is significantly less reactive than its isomer C3F7CH2OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and alcohols, the kinetic rate constant may be considered as not dependent on the number of –CF2– in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties for a given application by changing the number of –CF2– without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C3H7CH2OH, respectively. Conclusions  The studied CFCs’ substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the marine boundary layer, τ Cl values as low as 2.5 and 0.4 years for HFE-7000 and C3H7CH2OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes under such conditions may constitute a relevant sink. In the case of CF3CF2CF2OCH3, significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would result in underestimations of lifetimes and GWPs. Recommendations and perspectives  The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge of the atmospheric behavior and the structure–reactivity relationship discussed in this work may also contribute to the development of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution is still required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号