首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Concentrations of different species of mercury in arctic air and precipitation have been measured at Ny-Ålesund (Svalbard) and Pallas (Finland) during 1996–1997. Typical concentrations for vapour phase mercury measured at the two stations were in the range of 0.7–2 ng m−3 whereas particulate mercury concentrations were below 5 pg m−3. Total mercury in precipitation was in the range 3–30 ng l−1. In order to evaluate the transport and deposition of mercury to the arctic from European anthropogenic sources, the Eulerian transport model HMET has been modified and extended to also include mercury species. A scheme for chemical conversion of elemental mercury to other species of mercury and deposition characteristics of different mercury species have been included in the model. European emission inventories for three different forms of Hg (Hg0, HgCl2 and Hgp) have been implemented in the numerical grid system for the HMET model.  相似文献   

2.
An inverse modeling method using the four-dimensional variational data assimilation approach is developed to provide a top-down estimate of mercury emission inventory in China. The mercury observations on board the C130 aircraft during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) campaign in April 2001 are assimilated into a regional chemical transport model, STEM. Using a 340 Mg of elemental mercury emitted in 1999, the assimilation results in an increase in Hg0 emissions for China to 1140 Mg in 2001. This is an upper limit amount of the elemental mercury required in China. The average emission-scaling factor is ∼3.4 in China. The spatial changes in the mercury emissions after the assimilation are also evaluated. The largest changes are estimated on the China north-east coastal areas and the areas of north-center China. The influences of the observation and inventory uncertainties and the initial and boundary conditions on the emission estimates are discussed. Increasing the boundary conditions of Hg from 1.2 to 1.5 ng m−3, results in a top-down estimate of Hg0 emissions for China of 718 Mg, and leads the average scaling factor from 3.4 to 2.1.  相似文献   

3.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

4.
Observations of reactive gaseous mercury (RGM) in marine air show a consistent diurnal cycle with minimum at night, rapid increase at sunrise, maximum at midday, and rapid decline in afternoon. We use a box model for the marine boundary layer (MBL) to interpret these observations in terms of RGM sources and sinks. The morning rise and midday maximum are consistent with oxidation of elemental mercury (Hg0) by Br atoms, requiring <2 ppt BrO in most conditions. Oxidation of Hg0 by Br accounts for 35–60% of the RGM source in our model MBL, with most of the remainder contributed by oxidation of Hg0 by ozone (5–20%) and entrainment of RGM-rich air from the free troposphere (25–40%). Oxidation of Hg0 by Cl is minor (3–7%), and oxidation by OH cannot reproduce the observed RGM diurnal cycle, suggesting that it is unimportant. Fitting the RGM observations could be achieved in the model without oxidation of Hg0 by ozone (leaving Br as the only significant oxidant) by increasing the entrainment flux from the free troposphere. The large relative diurnal amplitude of RGM concentrations implies rapid loss with a lifetime of only a few hours. We show that this can be quantitatively explained by rapid, mass-transfer-limited uptake of RGM into sea-salt aerosols as HgCl3? and HgCl42?. Our results suggest that 80–95% of HgII in the MBL should be present in sea-salt aerosol rather than gas-phase, and that deposition of sea-salt aerosols is the major pathway delivering HgII to the ocean.  相似文献   

5.
A two-resistance exchange interface model (TREIM) was developed to simulate gaseous mercury (Hg) emissions from soils measured by dynamic flux chamber (DFC) operations. The model is based on mass balance principles and a Hg air/soil exchange theory that considers the influence of flushing flow rate on Hg air/soil exchange. We used this model to examine the effect of the flushing flow rate and understand the optimum conditions for DFC measurements of Hg emission fluxes over soils. Our model simulations indicate that the flushing flow rate is a most critical operation condition. We recommend adoption of high flushing flow rates (e.g., ∼15–40 l min−1 for DFCs of common design) based on our simulation findings that underestimation of actual emission fluxes can occur at low flushing flow rates. The biased low fluxes are caused by suppression of emission potential resulting from internal accumulation of emitted Hg and by higher exchange resistance both at low flushing flow rates. This model provides a useful means for estimating maximum steady-state fluxes and soil air Hg concentrations and for adjustment of the fluxes measured under different operating conditions. The model also finds its value in understanding mechanical processes of Hg emissions from soils.  相似文献   

6.
In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m−2 h−1. An annual emission of ∼8.7×104 g of mercury to the atmosphere was calculated for the 586 km2 area. The bulk of the Hg released into the atmosphere from the district (∼89%) is from naturally enriched non-point sources and ∼11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m−2 h−1) by an order of magnitude.  相似文献   

7.
Total gaseous mercury (Hg) fluxes from large (7.3×5.5×4.5 m, L×W×D) climate-controlled gas exchange mesocosms (Ecologically Controlled Enclosed Lysimeter Laboratories or EcoCELLs) containing tallgrass prairie soil–plant monoliths were measured from 2002 to 2005. EcoCELL Hg fluxes (calculated based on the difference in air Hg concentrations inside mesocosms and in incoming air, soil area of the monoliths, and airflow through the system) indicated a net annual emission of 102 μg m−2, while soil Hg fluxes measured simultaneously using a dynamic flux chamber were an order of magnitude lower. Since Hg fluxes measured from empty EcoCELLs in winter and when housing the soil–plant monoliths at the same time of year were similar, we hypothesized that the Hg signal generated by the tallgrass prairie soil–plant monoliths was too low to be detected using the EcoCELL technology. Because mesocosm Hg exchange was correlated with solar radiation and temperature, with the largest emissions occurring at midday and in the summer, we also hypothesized that the flux from mesocosm infrastructure would change over time. Limited by the ongoing experiment, the EcoCELLs were manipulated to test the above hypotheses. When monoliths were completely covered and excluded from the exchange with the surrounding air, mesocosm Hg exchange was unaffected. Furthermore, removal of vegetation at the end of each growing season did not affect mesocosm Hg fluxes. Tests with changing mesocosm airflow also indicated that the signal from the tallgrass prairie monoliths was not being measured. These results suggest that, although EcoCELLs performed well in a study using Hg contaminated soils and have been successfully applied to understand processes controlling Hg fluxes, there are limitations of this technology for quantifying Hg exchange from background substrates. Prior to the use of similar systems the detection limit and Hg exchange from an empty system need to be carefully quantified.  相似文献   

8.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

9.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

10.
The concentrations of total gaseous mercury (Hg) were determined at hourly intervals along with relevant environmental parameters that include both meteorological plus criteria pollutant data during two field campaigns (September 1997 and May/June 1998). The mean concentrations of Hg for the two study periods were computed as 3.94 and 3.43 ng m−3, respectively. By separating the data into daytime and nighttime periods, we further analyzed diurnal variation patterns for both seasons. Using our Hg data sets, we were able to recognize two contrasting diurnal variation patterns of Hg between two different seasons that can be characterized as: (1) the occurrences of peak Hg concentration during daytime (fall) and (2) slight reductions in daytime Hg concentration relative to nighttime (summer). To study the systematic differences in diurnal patterns between two different seasons, we analyzed Hg data in terms of different statistical approaches such as correlation (and linear regression) and factor analysis. Results of these analyses consistently indicated that different mechanisms were responsible for controlling the daytime distribution patterns of Hg. When the relationship between Hg and concurrently determined O3 is considered, its reaction with ozone is unlikely to limit Hg levels as the dominant sink mechanism (within the ranges of ozone concentrations found during this study, regardless of season). It is on the other hand suspected that the variation of boundary layer conditions between day/night periods may have been important in introducing the relative reduction in daytime Hg levels during summer. To further provide a general account of short-term variations in Hg distribution data, it is desirable to describe other unknown sink mechanisms.  相似文献   

11.
Aircraft measurements of air pollutants were made to investigate the characteristic features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26–27 April and 7–10 November in 1998, and 9–11 April and 19 June in 1999, together with aerosol measurements at the Taean background station in Korea. The overall mean concentrations of SO2, O3 and aerosol number in the boundary layer for the observation period ranged 0.1–7.4 ppb 32.1–64.1 ppb and 1.0–143.6 cm−3, respectively. It was found that the air mass over the Yellow Sea had a character of both the polluted continental air and clean background air, and the sulfur transport was mainly confined in the atmospheric boundary layer. The median of SO2 concentration within the boundary layer was about 0.1–2.2 ppb. However, on 8 November, 1998, the mean concentrations of SO2 and aerosol number increased up to 7.4 ppb and 109.5 cm−3, respectively, in the boundary layer, whereas O3 concentration decreased remarkably. This enhanced SO2 concentration occurred in low level westerly air stream from China to Korea. Aerosol analyses at the downstream site of Taean in Korea showed 2–3 times higher sulfate concentration than that of other sampling days, indicating a significant amount of SO2 conversion to non sea-salt sulfate during the long-range transport.  相似文献   

12.
This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of 2006. The optical remote sensing (ORS) area source measurement method EPA OTM 10 was used to provide Hg0 flux data for the site. These results are reported and compared with cell room roof-vent monitoring data acquired by the facility for similar time periods. The 24-h extrapolated mercury emission rate estimates determined by the two monitoring approaches are shown to be similar with overall averages in the 400 g day?1 range with maximum values around 1200 g day?1. Results from the OTM 10 measurements, which include both cell room emissions and potential fugitive sources outside the cell room, are shown to be approximately 10% higher than cell room monitoring results indicating that fugitive emissions from outside the cell room produce a small but measurable effect for this site.  相似文献   

13.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

14.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

15.
Eleven laboratories from North America and Europe met at Mace Head, Ireland for the period 11–15 September 1995 for the first international field intercomparison of measurement techniques for atmospheric mercury species in ambient air and precipitation at a marine background location. Different manual methods for the sampling and analysis of total gaseous mercury (TGM) on gold and silver traps were compared with each other and with new automated analyzers. Additionally, particulate-phase mercury (Hgpart) in ambient air, total mercury, reactive mercury and methylmercury in precipitation were analyzed by some of the participating laboratories. Whereas measured concentrations of TGM and of total mercury in precipitation show good agreement between the participating laboratories, results for airborne particulate-phase mercury show much higher differences. Two laboratories measured inorganic oxidized gaseous mercury species (IOGM), and obtained levels in the low picogram m-3 range.  相似文献   

16.
Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hgp) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October–November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g−1±10%).A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m−2 h−1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m−2 h−1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at −3 ng m−2 h−1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m−3), Hgp (3.0±6.2 pg m−3) and GEM (1.8±0.2 ng m−3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hgp (25.8 pg m−3) and RGM (21.7 pg m−3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher concentrations of GEM and Hgp but with no elevated peaks in RGM concentrations. Diurnal patterns were not statistically significant for RGM and Hgp at Maryhill.  相似文献   

17.
During the fall of 1998, the US Environmental Protection Agency and the Florida Department of Environmental Protection sponsored a 7-day study at the Ft. McHenry tunnel in Baltimore, MD with the objective of obtaining PM2.5 vehicle source profiles for use in atmospheric mercury source apportionment studies. PM2.5 emission profiles from gasoline and diesel powered vehicles were developed from analysis of trace elements, polycyclic aromatic hydrocarbons (PAH), and condensed aliphatic hydrocarbons. PM2.5 samples were collected using commercially available sampling systems and were extracted and analyzed using conventional well-established methods. Both inorganic and organic profiles were sufficiently unique to mathematically discriminate the contributions from each source type using a chemical mass balance source apportionment approach. However, only the organic source profiles provided unique PAH tracers (e.g., fluoranthene, pyrene, and chrysene) for diesel combustion that could be used to identify source contributions generated using multivariate statistical receptor modeling approaches. In addition, the study found significant emission of gaseous elemental mercury (Hg0), divalent reactive gaseous mercury (RGM), and particulate mercury (Hg(p)) from gasoline but not from diesel powered motor vehicles. Fuel analysis supported the tunnel measurement results showing that total mercury content in all grades of gasoline (284±108 ng L−1) was substantially higher than total mercury content in diesel fuel (62±37 ng L−1) collected contemporaneously at local Baltimore retailers.  相似文献   

18.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

19.
Five mercury (Hg) chemistry models are compared using the same data set for model initialisation. All five models include gas-phase oxidation of Hg(0) to Hg(II) (except for one model), fast reduction–oxidation aqueous reactions between Hg(0) and Hg(II), and adsorption of Hg(II) species to soot particles within droplets. However, the models differ in their detailed treatments of these processes. Consequently, the 48-h simulations reveal similarities but also significant discrepancies among the models. For the simulation that included all Hg species (i.e., Hg(0), Hg(II) and Hg(p)) as well as soot in the initial conditions, the maximum simulated Hg(II) aqueous concentrations ranged from 55 to 148 ng l−1 whereas the minimum concentrations ranged from 20 to 110 ng l−1. These results suggest that further experimental work is critically needed to reduce the current uncertainties in the formulation of Hg chemistry models.  相似文献   

20.
Improvements in measurement technology are permitting development of a more detailed scientific understanding of the cycling of mercury in the global atmospheric environment. Critical to advancing the state of knowledge is the acquisition of accurate measurement of speciated mercury (gaseous and particulate) at ground research stations in a variety of settings located around the globe. This paper describes one such research effort conducted at TVA's Look Rock air quality monitoring site in Tennessee—a mountain top site (813 m elevation) just west of the Great Smoky Mountains National Park. The Great Smoky Mountains National Park is the largest National Park in the eastern US and it receives environmental protection under a variety of US statutes. Gaseous and particle mercury species along with some additional trace gases were measured at Look Rock during two field studies totaling 84 days in the spring and summer of 2004. Average results for the entire sampling period are: gaseous elemental mercury Hg(0): 1.65 ng m−3, reactive gaseous mercury RGM: 0.005 ng m−3, particulate mercury Hg(p): 0.007 ng m−3. Literature review indicates that these levels are within the range found for other rural/remote sites in North America and worldwide. Reactive and particulate mercury comprised together less than 1%, on average, of total airborne mercury at Look Rock. When compared to the global background mercury literature, the Look Rock measurements demonstrate that the atmospheric mercury levels in the vicinity of the Great Smoky Mountains National Park are clearly dominated by the global atmospheric pool, not by local or regional sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号