首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为了解钢铁企业的大气污染特征,使用在线监测仪器于2016年7月对某典型钢铁企业VOCs(挥发性有机化合物)、PM2.5和NMHC(非甲烷烃)等污染物进行观测,同时基于FAC(气溶胶生成系数)估算了该区域的SOA(二次有机气溶胶)生成潜势.结果表明:观测期间ρ(总VOCs)为(106.08±63.81)μg/m3,与ρ(NMHC)(以C计)的相关系数(R2)达到了0.8(P < 0.05)以上;VOCs中主要类别为烷烃和芳烃;ρ(O3)超标期间的ρ(苯)和ρ(甲苯)分别比ρ(O3)未超标时间段高47.0%和37.2%,并且高ρ(总VOCs)期间芳烃占比高达46.0%,这可能与钢铁企业在炼焦时苯系物(苯、甲苯和二甲苯)排放有关.ρ(总VOCs)、ρ(NMHC)、ρ(烷烃)、ρ(芳烃)和ρ(乙炔)均呈早晚高峰值的日变化特征,而ρ(烯烃)由于异戊二烯受天然源排放影响,呈午间单峰值的特征.观测期间的SOA生成潜势为2.54 μg/m3,较城区高出76.4%,显示钢铁企业SOA对PM2.5具有一定贡献;其中芳烃对SOA生成贡献高达97.2%,主要贡献组分包括苯、间/对-二甲苯、乙苯、苯、邻-二甲苯.研究显示,钢铁企业VOCs污染治理应重点控制苯系物,同时烷烃的排放也不容忽视.   相似文献   

2.
焦作市是京津冀地区"2+26"通道城市之一.为研究焦作市大气污染特征,于2016年1月-2018年2月使用3个国控站点(马村区生态环境局、焦作市生态环境局和高新区政府)大气环境监测数据,以及2018年1月焦作市边界站PM2.5及其化学组分(水溶性离子和碳组分)监测数据进行分析.结果显示:焦作市大气污染以PM2.5污染为主,2017年ρ(NO2)、ρ(PM2.5)、ρ(PM10)、ρ(CO)和ρ(SO2)平均值分别为42.4 μg/m3、79.0 μg/m3、136.5 μg/m3、1.42 mg/m3和38.3 μg/m3,较2016年分别下降了10.5%、10.6%、11.2%、20.7%和37.6%.在时间分布上,大气污染物质量浓度日变化具有明显的季节性特征,春、夏两季ρ(NO2)日变化较秋、冬两季呈更宽的"U型",ρ(SO2)峰值出现在12:00左右,推测原因与夜间高架源排放有关;在空间分布上,本地一次污染排放可能主要来自市区工地扬尘、西南地区交通源和东部污染点源.观测期间,ρ(NO3-)、ρ(NH4+)和ρ(SO42-)较高,平均值分别为39.42、23.66和23.01 μg/m3,分别占水溶性离子质量浓度的41.8%、25.1%和24.4%,占ρ(PM2.5)的27.4%、16.4%和16.0%.污染天的NOR(氮转化率)(0.35)和SOR(硫转化率)(0.43)明显高于清洁天的NOR(0.25)和SOR(0.18),表明污染天NO2和SO2二次转化程度更高.SOR和NOR随相对湿度的增加而增加,表明相对湿度较高时有利于NO2和SO2的二次转化.污染天和清洁天ρ(SOC)(SOC为二次有机碳)估算值分别为19.79和3.51 μg/m3,分别占ρ(OC)的79.4%和54.9%,占ρ(PM2.5)的9.8%和10.4%,表明焦作市SOC对OC有较大的贡献.PSCF(潜在源贡献因子法)结果表明,本地源是影响焦作市秋、冬两季PM2.5的主要潜在源,太行山南麓区域输送也对其有一定贡献.研究显示,焦作市大气污染较严重,本地一次排放、二次转化和区域输送是焦作市PM2.5的主要来源.   相似文献   

3.
2014年10月北京市4次典型空气重污染过程成因分析   总被引:12,自引:0,他引:12       下载免费PDF全文
采用数值模拟与观测资料相结合的方式,对2014年10月北京市4次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析. 结果表明,京津冀区域稳定的气象条件是形成空气重污染的主要原因,4次重污染过程大气条件均不利于污染物扩散,表现为大气层结稳定,近地层逆温(平均逆温强度为2.26 ℃/100 m)明显,风速(平均值为1.52 m/s)小,相对湿度(平均值为80.75%)大. 在4次重污染过程中8—11日污染最重,ρ(PM2.5)日均值平均为264 μg/m3,并且区域输送对北京贡献率最大,平均值为63.75%;24—25日污染程度次之,逆温最强,逆温强度达5.94 ℃/100 m;18—20日重污染中北京ρ(PM2.5)高值(>200 μg/m3)区主要集中在该市西北部地区;30—31日污染相对较轻,ρ(PM2.5)日均值最高只有154 μg/m3. 数值模拟表明,在4次典型重污染过程中,来自南方(包括河北、河南和山西西部等地)的外来污染物输送对北京PM2.5贡献较大,外来贡献率分别在42.36%~69.12%之间,同时北京本地也存在较强的二次无机盐及有机物转化过程.   相似文献   

4.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

5.
为研究长三角背景点夏季PM2.5污染特征,于2018年5月30日—8月15日在上海市崇明岛对PM2.5样品进行昼夜采集,并对其中水溶性无机离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)进行了分析.运用PSCF(潜在源贡献)方法判别污染物排放源区,并结合PCA(主成分分析)和PMF(正交矩阵因子)源解析探究PM2.5来源.结果表明:①观测期间崇明岛ρ(PM2.5)平均值为(33±21)μg/m3,低于GB 3095—2012《环境空气质量标准》一级标准限值(35 μg/m3),但在部分时段存在显著超标现象,ρ(PM2.5)最高值在120 μg/m3以上.②水溶性无机离子质量浓度平均值为(14±9.3)μg/m3,占PM2.5的42.4%,其中SNA(SO42-、NO3-、NH4+三者统称)为主要离子,占水溶性离子总质量浓度的85.7%.③n(NH4+)/n(SO42-)(NH4+与SO42-的摩尔浓度比)显示,清洁期〔ρ(PM2.5) < 15 μg/m3〕呈贫铵状态,过渡期〔15≤ρ(PM2.5)≤35 μg/m3〕和污染期〔ρ(PM2.5)>35 μg/m3〕均呈富铵状态;过渡期SNA主要以NH4HSO4和NH4NO3形式存在,而污染期则主要以(NH4)2SO4和NH4NO3形式存在.④通过对两次典型污染事件进行离子相关性分析和PSCF分析发现,E1污染事件(5月30日—6月8日)为局地生物质燃烧型污染事件,E2污染事件(7月23日—8月1日)为区域传输污染事件.源解析结果进一步表明,两次典型污染事件期间气态污染物的二次转化对PM2.5的贡献最显著,贡献率分别为62.8%和59.8%;其次是生物质燃烧,其贡献率分别为32.5%和20.1%;E2污染事件期间海盐源对崇明岛PM2.5贡献率较高(16.6%),远超过E1污染事件期间对PM2.5的贡献率(2.7%).研究显示,区域输送对崇明岛PM2.5有显著贡献,二次颗粒物累积是崇明岛PM2.5超标的主要原因.   相似文献   

6.
采用苏玛罐采样,预浓缩Entech 7100-Agilent 7890A GC/5975C MSD联用系统分析,分析太原市5个居民休闲公共场所非周末与周末时段空气中VOCs(挥发性有机物)的暴露特征. 结果表明:全部样品中51种VOCs均有检出,总平均暴露水平为94.83 μg/m3,ρ(烷烃)、ρ(芳香烃)和ρ(烯烃)最高,三者分别占ρ(总VOCs)的47.27%、43.40%和9.33%. 苯暴露水平为5.22 μg/m3,是欧盟规定的环境空气中ρ(苯)年均值的1.04倍. VOCs暴露水平在儿童公园(为151.39 μg/m3)最高,在龙潭公园 (64.55 μg/m3)最低. 这可能与儿童公园位于太原市最大商业区且周围建筑密集污染物不易扩散,而龙潭公园周围地势开阔污染物易扩散有关. 儿童公园周末时段VOCs的暴露水平明显大于非周末时段,反映了人为活动对环境空气中VOCs的影响. 太原市公共场所非周末与周末时段的VOCs非致癌风险系数较低;周末时段空气中苯对人体的致癌风险(8.44×10-7)是非周末时段(3.39×10-7)的2.49倍,但均未超过苯的人体致癌风险值(1.0×10-6). 来源分析显示,燃煤和机动车尾气排放是太原市公共场所空气中VOCs的主要来源.   相似文献   

7.
超大城市SO2排放对硫酸盐区域分布影响的观测与模拟   总被引:5,自引:2,他引:3  
2002年8月14—24日在临安采集气溶胶样品,对气溶胶质往往w量和离子成分的尺度分布进行分析.结果表明:SO42-主要集中在粒径<2.1 μm的细粒子中,约占所有尺度段上SO42-质量总和的94%;细粒子(PM2.1)中,ρ(SO42-)和ρ(NH4+)最高,二者之和占所分析离子质量浓度总和的89%. 利用公共多尺度空气质量模式(CMAQ)的过程分析对影响硫酸盐气溶胶分布特征的主要因子进行定量评估,结果表明:经过云内液相氧化和湿清除形成硫酸盐气溶胶的速率为0.19 μg/(m3·h),其对硫酸盐气溶胶的贡献最大;SO2液相氧化反应中速率最大的是H2O2〔5.26 μg/(m3·h)〕,其次是O2〔4.14 μg/(m3·h)〕和O3〔1.56 μg/(m3·h)〕. 模拟分析证明,采样期间研究区域SO42-主要是由上海及其以南的浙江沿海一带通过SO2云内与H2O2和O2的液相氧化反应生成. 通过模式敏感性试验发现,在个例的风场配置下,上海排放的SO2对临安地区的SO2和硫酸盐的贡献率分别达15%和22%.   相似文献   

8.
欧洲酸雨控制历程及效果综合评述   总被引:4,自引:0,他引:4  
在分析大量文献资料的基础上,综合评述了欧洲酸雨发展和控制的主要历程. 20世纪70年代以来,欧洲酸雨控制主要经历了EMEP建立与达成共识,CLRTAP公约形成与实施平均减排方针,基于临界负荷与生态敏感性制定减排策略,以及多污染物协同控制与追求多重环境效应等4个发展阶段,并取得了显著的控制效果. 1980—2007年,欧洲硫排放减少了84%,NOx排放减少了37%;大气中ρ(SO2)从10.32 μg/m3降至1.26 μg/m3,ρ(NO2)从10.38 μg/m3降至7.15 μg/m3;欧洲降水酸度呈不断下降的趋势. 最后,基于欧洲酸雨控制先进经验的分析,结合实际情况提出了未来我国酸雨控制建议.   相似文献   

9.
为认识淄博市近年来大气臭氧(O3)时空分布特征,基于山东省淄博市19个环境空气质量监测点2016-2019年近地面O3的连续观测数据,运用Pearson相关性分析法、反距离权重法等方法开展研究.结果表明:①淄博市2016-2019年ρ(O3-8 h)(O3-8 h为O3日最大8 h浓度)第90百分位数范围为184~203 μg/m3,是GB 3095-2012《环境空气质量标准》二级标准限值(160 μg/m3)的1.15~1.27倍.②ρ(O3-8 h)季节性变化呈夏季(155 μg/m3)>春季(129 μg/m3)>秋季(104 μg/m3)>冬季(60 μg/m3)的特征;ρ(O3-8 h)月变化呈双峰型,峰值分别出现在6月(186 μg/m3)和9月(147 μg/m3);ρ(O3-8 h)日变化呈单峰型,峰值(117 μg/m3)出现在14:00左右.③ρ(O3-8 h)空间分布呈南北低、中间高的特点,并具有区域均匀性发展趋势.④CO、NO、NO2和NOx等前体物浓度均与ρ(O3-8 h)呈负相关,但在夏季相关性较差;冬季夜晚局地污染物对Ox的贡献大于白天.⑤ρ(O3-8 h)与温度和风速均呈显著正相关,与相对湿度呈显著负相关,当风向为西南风时ρ(O3-8 h)较高.研究显示,淄博市O3表现为典型的光化学生成特征,2016-2019年O3污染总体呈加重趋势.   相似文献   

10.
北京市道路空气中挥发性有机物时空分布规律   总被引:6,自引:4,他引:2  
为研究城市交通道路空气中挥发性有机化合物(VOCs)的污染状况、变化规律和不同道路类型的浓度特点,于2008年5月—2009年7月对北京市3种典型道路(街道峡谷、交叉道路和开阔道路)进行空气质量监测. 采用气相色谱法测定道路空气中非甲烷烃(NMHCs)、苯系物(苯、甲苯和二甲苯)的质量浓度. 结果表明:北京市道路空气中挥发性有机化合物污染比较严重,其中ρ(NMHCs)日均值为1.0~3.3 mg/m3,ρ(苯系物)日均值为8.8~80.0 μg/m3. 污染物浓度日变化多呈现双峰型. 选取1,4,7和10月为不同季节的代表月份,7月的ρ(NMHCs)和ρ(苯系物)均最高,10月最低. 3种典型道路中,街道峡谷的污染物质量浓度高于另外2种道路. 道路附近的挥发性有机物质量浓度主要受到机动车排放、气象条件和地形条件等的影响.   相似文献   

11.
北京官厅水库水体中挥发性有机物健康风险评价   总被引:19,自引:5,他引:14  
为研究北京官厅水库水体中挥发性有机物对人体产生的潜在健康危害风险,从9个有代表性的采样点采集水样,用顶空气相色谱法测定了挥发性氯代烃的质量浓度,所检测的5种挥发性氯代烃的质量浓度总量为5.33~97.74 ng/L,同时讨论了其污染水平和分布特点.应用美国环境保护署(US EPA)的健康风险评价方法,对官厅水库水体中挥发性氯代烃通过食入和皮肤接触2种途径进入人体的危害进行了风险计算和初步评价. 结果表明:水库中各采样点的非致癌风险和致癌风险均未超标,从位于桑干河八号桥的6号采样点采集的水样中挥发性氯代烃的非致癌风险值达到10-4数量级,其余采样点的非致癌风险值均在10-5数量级;各采样点的致癌风险指数远远低于10-4的数量水平. 因此,初步认为目前官厅水库水体中挥发性氯代烃不会对人体产生明显的健康危害.   相似文献   

12.
唐山市和北京市夏秋季节大气VOCs组成及浓度变化   总被引:23,自引:17,他引:6  
孙杰  王跃思  吴方堃  邱俊 《环境科学》2010,31(7):1438-1443
2007年和2008年6~9月,利用前级浓缩-气相色谱/质谱法,对唐山市大气中挥发性有机物的组成及浓度变化进行了采样分析研究.2008唐山市大气VOCs平均浓度为163.5×10-9C(碳单位体积比,下同),其中饱和烷烃占45.9%、芳香烃占29.9%、烯烃占5.9%、卤代烃占18.8%;相对2007年同期唐山大气VOCs平均浓度340.4×10-9C下降了51.9%,苯系物下降幅度最大为66.5%,卤代烃中工业排放的二氯苯浓度有所上升;2008唐山市大气VOCs比同期北京大气VOCs浓度低8.5%,奥运时段VOCs变化表明,唐山市大气VOCs除交通源外工业排放也是大气污染的重要来源.  相似文献   

13.
多环芳烃作为一类典型的持久性有毒物质,一直是环境领域关注的热点和重点,有关多环芳烃衍生物的报道,尤其是有关大气中烷基和硝基多环芳烃的研究报道仍非常缺乏。本研究选取莱州湾刁龙嘴为采集区域,对大气颗粒相样品中16种母体多环芳烃(PAHs)、12种烷基多环芳烃(A–PAHs)和25种硝基多环芳烃(N–PAHs)进行分析。结果表明,16种母体多环芳烃(Σ16PAHs)的浓度范围为517.2 ~ 64124.8 pg/m3;12种烷基化多环芳烃(Σ12A–PAHs)的浓度范围为273.6 ~ 5897.3 pg/m3;25种硝基化多环芳烃(Σ25N–PAHs)的浓度范围为113.5 ~ 1032.3 pg/m3。3种类型多环芳烃的浓度和污染模式均表现出明显的季节变化特征,其中,夏季,2环、3环的PAHs、A–PAHs和N–PAHs比例相对较高,而冬季4环及以上单体的比例偏高。PAHs的特征比值表明,莱州湾刁龙嘴地区PAHs的来源主要以柴油、煤及生物质燃烧为主。Σ16PAHs、Σ12A–PAHs和Σ25N–PAHs与温度均呈现出显著的负相关性(R2 = 0.94,p < 0.01;R2 = 0.61, p < 0.01;R2 = 0.74,p < 0.01),说明温度是影响颗粒相吸附芳烃类物质的一个主要因素。此外,三者之间Pearson相关关系表明,PAHs及其衍生物表现出相同的污染来源和相似的环境行为。  相似文献   

14.
以湖南某地区的饮用水源——某河流流经之处所涉3个乡镇的居民饮用水为研究对象,对水体中16种优控PAHs的质量浓度及其分布特征进行调查,并结合当地人群实际暴露参数进行健康风险评价. 结果表明:饮用水中ρ(∑PAHs)平均值为253.13 ng/L,分布范围为70.22~673.80 ng/L;其中,ρ(萘)和ρ(菲)最高,分别占ρ(∑PAHs)的39%和32%;毒性相对较大的苯并芘的检出率为67.5%,ρ(苯并芘)最高值为8.95 ng/L,满足GB 5749—2006《生活饮用水卫生标准》要求;研究区PAHs的致癌风险、一般人群的致癌风险均在可接受范围内,但是塘溪乡居民和其他部分特殊人群(如男性、城市地区和60~79岁人群)的致癌风险均大于10-6,值得关注;研究区PAHs暴露的非致癌风险均小于10-6,在可接受范围内.   相似文献   

15.
Aliphatic hydrocarbons (n-alkanes) associated with fine particulate matter were determined in the ambient air of urban, industrial and coastal areas in Tianjin, China, where intensive coal burning for industrial and domestic purpose takes place. n-Alkane homologues from C12 to C35 were quantifiable in all samples with C20–C31 being the most abundant species. Average concentrations of the total n-alkanes were 148.7, 250.1 and 842.0 ng/m3 in July, April and January, respectively. Seasonal variations were mainly attributed to ambient temperature changes and coal combustion for residential heating. Among the three studied areas, the highest levels of n-alkanes were observed in the industrial complex in winter and spring, but in summer the coastal alkane concentration moved up to the highest. A mono-modal distribution for n-alkanes was observed in spring and summer with odd carbon number predominance and a maximum centered at C27–C31, suggesting the release of plant wax into the atmosphere. The bimodal distribution with maxima at C22 and C26 observed in winter indicated a substantial influence of fossil fuel sources. All the CPIs (CPI1, CPI2, CPI3) values, varying between 0.64 and 1.97, indicated the influence of anthropogenic emissions on fine organic aerosols. The estimated contributions of plant wax to total n-alkanes were on average of 12.9%, 19.1% and 26.1% for winter, spring and summer, respectively.  相似文献   

16.
硝基多环芳烃是大气细颗粒物中具有致癌效应的一类重要污染物,为探明硝基多环芳烃污染特征与来源,采集南京市14个大气细颗粒样品,利用气相色谱-质谱联用仪(GC-MS)测定硝基多环芳烃浓度,进行分布特征分析,来源识别和健康风险评估.结果表明,南京市大气细颗粒物中2,8-二硝基二苯并噻吩(743 pg·m-3)、2,7-二硝基芴(331 pg·m-3)、9-硝基蒽(326 pg·m-3)、3-硝基荧蒽(217 pg·m-3)和1,8-二硝基芘(193 pg·m-3)为主要的硝基多环芳烃;硝基多环芳烃检出浓度具有明显的季节变化,冬季最高(3082 pg·m-3),秋季其次(1553 pg·m-3),春季最低(1218 pg·m-3).南京市大气细颗粒物中硝基多环芳烃主要来自多环芳烃大气光氧化反应与生物质燃烧,二次生成是硝基多环芳烃的重要来源.当前南京PM2.5中硝基多环芳烃的致癌风险可控,二硝基多环芳烃是致癌风险的主要来源.  相似文献   

17.
为探究新疆维吾尔自治区石化企业典型工艺〔LCZZ(蜡催装置工艺)、XHS(循环水工艺)、DFT(大芳烃工艺)、SX(三循工艺)、180万t(180万t加氢工艺)、200万t(200万t加氢工艺)〕无组织VOCs(挥发性有机物)的排放特征及光化学反应活性,采用气袋法进行样品采集,用GC-MS(气相色谱-质谱仪)定量分析其主要成分,并利用LOH法(·OH反应速率法)和MIR法(最大增量反应活性法)估算VOCs组分的臭氧生成潜势.结果表明:该石化企业中,各典型工艺无组织排放的ρ(TVOCs)(VOCs化合物质量浓度之和)较高,范围为87.2~185 μg/m3,其中LCZZ排放最高,180万t排放最低;各工艺检测到的VOCs成分构成整体上相似,均以烷烃和卤代烃为主,w(烷烃)和w(卤代烃)范围分别为41.7%~67.3%和24.3%~50.1%;不同工艺的无组织VOCs特征组分各有不同,但均为ρ(氟利昂113)最高,w(氟利昂113)范围为22.3%~45.8%.不同工艺无组织废气中臭氧生成贡献率较大的物种均为烯炔烃和烷烃;LCZZ、XHS、SX及180万t中的丙烯、DFT中的正丁烷和200万t中的2,3-二甲基丁烷是各工艺排放VOCs中臭氧生成贡献率最大的组分,同时也是对光化学污染贡献最为突出的污染物质.研究显示,该石化企业无组织VOCs的污染较为严重,具有明显的工艺差异性,VOCs组分较复杂,应采取分工艺、生产全过程控制的污染防治对策.   相似文献   

18.
长江河口区域有机污染物的特征分析   总被引:18,自引:8,他引:10  
对2002-2003年采集于长江河口区域的水样进行了检测分析.共鉴定出有机污染物9类234种,包括VOCs23种、SVOCs211种;其中属美国列出的129种优先控制污染物的有49种,属我国列出的58种优先控制污染物的有24种,属GB3838-2002控制的有19种.VOCs主要包括卤代烃类和单环芳香族类,其质量浓度平均值分别为0.42和0.17μg/L.SVOCs主要包括多环芳烃类、酯类、单环芳香族类、卤代烃类、酚类和醚类,其质量浓度平均值分别为0 50,1.13,0.41,0.06,0.07和0.16 μg/L;其中多环芳烃类、酯类和单环芳香族类的污染程度相对较高,分别超标1.78,0.16~0.37和0.002~0.44倍.   相似文献   

19.
辽宁地区大气黑碳气溶胶质量浓度在线连续观测   总被引:4,自引:1,他引:3  
利用2008年3月—2009年2月辽宁沈阳、大连、鞍山、抚顺和本溪ρ(黑碳)观测资料,分析了其变化特征及重要影响因子. 结果表明,5个城市小时ρ(黑碳)的变幅较大,最小值出现在抚顺秋季的2008年9月23日00:00,ρ(黑碳)为0.14 μg/m3,最大值出现在本溪冬季的2008年11月11日08:00,ρ(黑碳)为64.52 μg/m3;本溪ρ(黑碳)日均值最高,为6.87 μg/m3,其次是沈阳、鞍山和抚顺,大连的ρ(黑碳)日均值最小,为3.18 μg/m3;ρ(黑碳)日变化有明显的峰值和谷值,最高值一般出现在06:00─09:00和17:00─19:00,低值出现在02:00─04:00和12:00─15:00;风速对ρ(黑碳)有重要影响,当风速<3.5 m/s时,ρ(黑碳)随风速增大而减小,当风速>3.5 m/s时,风速对ρ(黑碳)的影响不大;后向风轨迹较好地反映污染物在不同城市区域间的传输特征,在冬季沈阳以上风区域北部影响为主;ρ(黑碳)日均值变化和大气低层垂直温度梯度变化有较好的对应关系.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号