首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Minimum quantity lubrication (MQL) is a cost-effective and environmentally friendly alternative to flood cooling. MQL spray jet has been shown to have potential to be applied successfully in different machining processes. Since the amount of lubricating liquid employed in MQL jet is very low, it is necessary to generate and apply the MQL spray efficiently. However, efficient application of MQL is not only related to spray atomization characteristics and delivery parameters but is also affected by machining conditions. The present paper demonstrates a theoretical and experimental investigation on the spray atomization and delivery parameters in the grinding process of Al2O3 engineering ceramics. The spray atomization characteristics studied are carrier gas velocity, liquid droplet size and liquid droplet velocity. Experiments were performed to verify the delivery parameters of MQL spray including nozzle angle, nozzle distance, lubricant flow rate and gas flow rate in the case of Al2O3 ceramics grinding. The experimental results confirm the theoretical outcomes and indicate that by applying optimal spray delivery parameters efficient lubrication takes place. Moreover, efficient lubrication of Al2O3 ceramics grinding can decrease the challenges existing in ceramics grinding processes by reducing grinding forces and surface roughness.  相似文献   

2.
In recent years, the increasing world population and rapid industrial development has increased the consumption of fossil fuel-derived oils. In response to the resulting exhaustion of fossil fuel energy, many countries around the world are investigating methods of waste energy recovery and reuse, including oil recovery from the pyrolysis process of waste tires. This study investigates the efficiency of an ultrasound-assisted oxidative desulfurization (UAOD) process in sulfur reduction from diesel oil and the pyrolysis oil from waste tires treatment. The results indicate that the oxidation efficiency increases as the doses of transition metal catalyst are increased. Longer sonication time also enhances the oxidation process, apparently through the biphasic transfer of oxidants, which results in a high yield of organic sulfur oxidation products. The best desulfurization efficiency was 99.7% (2.67 ppm sulfur remaining) and 89% (800 ppm sulfur remaining) for diesel and pyrolysis oils, respectively, via a process executed by two UAOD units connected in series and combined with solid adsorption using 30 g of Al2O3 in 6 cm columns. These batch experiment results demonstrate clean waste energy recovery and utilization, while fulfilling the requirements of Taiwan EPA environmental regulations (sulfur concentrations less than 5000 ppm).  相似文献   

3.
Increasing use of poly crystalline diamond (PCD) inserts as cutting tools and wear parts is vividly seen in automobile, aerospace, marine and precision engineering applications. The PCD inserts undergo series of manufacturing processes such as: grinding that forms the required shape and polishing that gives a fine finish. These operations are not straight forward as PCD is extremely resistant to grinding and polishing. Single crystal diamond can easily be polished by choosing a direction of easy abrasion, but polishing a PCD imposes serious difficulties as the grains are randomly oriented. Prior research on polishing of PCD inserts includes electro discharge grinding (EDG), dynamic friction polishing and grinding by a vitrified bonded diamond wheel. The surface textures of PCD produced using an EDG process often contains: micro cavities, particle pullout, micro-grooves, chipped edges, cracks and gouch marks. While applying the dynamic friction polishing method the PCD material undergoes phase transformation and hence increased polishing rate was apparently seen. However the phase transformation of PCD deteriorates the strength of the insert. Furthermore the inserts produced using the dynamic polishing method often exhibits cracks, chip off and edge damage while using as a cutting tool. Therefore, a new method “aero-lap polishing” was attempted as it applies controlled amount of impinging force by which the surface damage can be significantly reduced. The study did establish an improvement of surface finish of PCD from Ra = 0.55 μm, Rt = 4.5 μm to Ra = 0.29 μm, Rt = 1.6 μm within 15–25 min of polishing time along with significant reduction in surface defects.  相似文献   

4.
The application of micro-electrical discharge machining (micro-EDM) in deep-hole drilling is still limited due to the difficulty in flushing of debris and unstable machining. Present study introduces a simplistic analytical model to evaluate the effectiveness of low frequency workpiece vibration during the micro-EDM drilling of deep micro-holes. In addition, experimental investigation has been conducted to validate the model by studying the effects of workpiece vibration on machining performance, surface quality and dimensional accuracy of the micro-holes. The effect of vibration frequency and amplitude for three different settings of aspect ratios has been studied experimentally. Moreover, the vibration experiments have been conducted at different levels of gap voltages and capacitances in order to understand the effect of electrical parameters and effectiveness of low-frequency workpiece-vibration at different levels of discharge energies. It has been shown analytically that the effectiveness of low frequency workpiece vibration during micro-EDM drilling can be evaluated by a parameter ‘Kv’ (ratio of maximum acceleration of the vibrating plate in gravitational direction to gravitational acceleration ‘g’), which can be determined from the vibration frequency, amplitude and phase angle of the vibrating workpiece. The theoretical model reveals that for Kv > 1, the position of debris particles will be above the workpiece; thus can be flushed away from machined zone effectively. The experimental reasons for improved micro-EDM drilling performance at the setting of Kv > 1 are found to be the increased effective discharge ratio, reduced short-circuits and improved dielectric flushing. The experimental results also reveal that the low frequency vibration is more effective at the low discharge energy level, thus making it more suitable for micro-EDM. Considering the effect on both the machining characteristics and micro-hole accuracy parameters, vibration frequency of 750 Hz and amplitude of 1.5 μm was found to provide improved performance for the developed vibration device.  相似文献   

5.
Although there are already successful industrial experiences in other machining industries with the elimination of coolants, this is not so in the grinding industry due to the large amounts of generated heat that must be evacuated from the contact zone. In this work, a new approach to the elimination of fluids in grinding is presented. The technology is based on the use of a hybrid Minimum Quantity of Lubricant (MQL)-low temperature CO2 system that reduces lubrication consumption. Abrasive grits are protected by the layer of frozen oil, resulting in a significant improvement in grinding wheel life and surface quality of the machined component. Although the cooling action is reduced with respect to the conventional coolant, no thermal damage was observed on the workpiece.  相似文献   

6.
Silver nanoparticles with average diameter of 10 ± 3 nm were synthesized within the sieves of poly(N-isopropylacrylamide-2-hydroxyethylmethacrylate-acrylic acid)(p(NIPAAm-HEMA-AAc))polymer microgels. Free radial emulsion polymerization was employed for synthesis of p(NIPAAm-HEMA-AAc) polymer microgels. Silver nanoparticles were introduced within the microgels sphere by in situ reduction method. Microgels and hybrid microgels were characterized by Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy,transmission electron microscopy and dynamic light scattering measurements. Catalytic activity of Ag-p(NIPAAm-HEMA-AAc) hybrid microgels was studied using catalytic reduction of 4-nitrophenol(4-NP) as a model reaction in aqueous media. The influence of sodium borohydride(Na BH4) concentration, catalyst dose and 4-NP concentration on catalytic reduction of 4-NP was investigated. A linear relationship was found between catalyst dose and apparent rate constant(kapp). The mechanism of catalysis by hybrid microgels was explored for further development in this area. The deep analysis of catalytic process reveals that the unique combination of NIPAAm, HEMA and AAc does not only stabilize silver nanoparticles in polymer network but it also enhances the mass transport of hydrophilic substrate like 4-NP from outside to inside the polymer network.  相似文献   

7.
The combined ecological toxicity of TiO2 nanoparticles (nano-TiO2) and heavy metals has been paid more attention. As the common pollutants in water environment, surfactants could affect the properties of nanoparticles and heavy metals, and thus further influence the combined toxicity of nano-TiO2 and heavy metals. In this study, the effects of sodium dodecyl benzene sulfonate (SDBS) and Tween 80 on the single and combined toxicities of Cd2 + and nano-TiO2 to Escherichia coli (E. coli) were examined, and the underlying influence mechanism was further discussed. The results showed both SDBS and Tween 80 enhanced the toxicity of Cd2 + to E. coli in varying degrees. The reaction of SDBS and Cd2 + could increase the outer membrane permeability and the bioavailability of Cd, while Tween 80 itself could enhance the outer membrane permeability. The combined toxicity of nano-TiO2 and Cd2 + to E. coli in absence of surfactant was antagonistic because of the adsorption of Cd2 + to nano-TiO2 particles. However, in the presence of SDBS, both SDBS and nano-TiO2 influenced the toxicity of Cd2 +, and also SDBS could adsorb to nano-TiO2 by binding to Cd2 +. The combined toxicity was reduced at Cd2 + lower than 4 mg/L and enhanced at Cd2 + higher than 4 mg/L under multiple interactions. Tween 80 enhanced the combined toxicity of nano-TiO2 and Cd2 + by increasing the outer membrane permeability. Our study firstly elucidated the effects of surfactants on the combined toxicity of nano-TiO2 and Cd2 + to bacteria, and the underlying influencing mechanism was proposed.  相似文献   

8.
Process of obtaining CaCO3 from the waste post-distillation liquid DS and post-filtration liquid from Solvay method of the soda production at 303 K was investigated. Reagents were dosed in a stoichiometric ratio without dilution, for different concentrations of the DS and post-filtration liquids. The dosage time was varied in the range 2–30 min, the reagent stirring rate was 500 rpm. For the obtained samples of CaCO3, the bulk and packing densities, water, paraffin oil and dibutyl phthalate absorption capacities, distribution of the particle size as well as the crystalline form were determined.  相似文献   

9.
Biodiesel, produced from various vegetable and/or animal oils, is one of the most promising alternative fuels for transportation in Thailand. Currently, the waste oils after use in cooking are not disposed adequately. Such oils could serve as a feedstock for biodiesel which would also address the waste disposal issue. This study compares the life cycle greenhouse gas (GHG) emissions from used cooking oil methyl ester (UCOME) and conventional diesel used in transport. The functional unit (FU) is 100 km transportation by light duty diesel vehicle (LDDV) under identical driving conditions. Life cycle GHG emissions from conventional diesel are about 32.57 kg CO2-eq/FU whereas those from UCOME are 2.35 kg CO2-eq/FU. The GHG emissions from the life cycle of UCOME are 93% less than those of conventional diesel production and use. Hence, a fuel switch from conventional diesel to UCOME will contribute greatly to a reduction in global warming potential. This will also support the Thai Government's policy to promote the use of indigenous and renewable sources for transportation fuels.  相似文献   

10.
Attributes related to the dimensional quality of hot rolled steels are very important in commercial sectors that make direct use of this product, because delay or equipment damage can be avoided when forming in downstream operations. In this research, the steel sheet edge trimming process and its relationship with the defect known as broken edge is experimental and numerically studied. The type of material, horizontal clearance between knives and the energy spent during the cutting process are analyzed in detail. A metal-mechanical study is carried out for obtaining a microstructural hardness and flow stress characterization. Consequently, the edge trimming process is FEM simulated and its results in relation to knife penetration and shear stress lead to determining the energy spent during the cutting process. A mathematical model is determined under the consideration that minimum energy gives the optimum cutting conditions. The model proposes a reliable value for the horizontal clearance (Hc), between knives, taking as the principal factors: energy consumed during the edge trimming process, sheet thickness (Th), carbon content (C) and/or its ultimate tensile strength, expressed as: Hc = α + βTh  γC. A comparison of the recommended numerical results with the best practical conditions is carried out and a high coincidence is successfully found. This model is expected to be easily adopted as a tool where operators can adjust and control the parameters of process, and then, as a result, produce a sheet without edge trimming defects as well as a reduction in efficiency costs.  相似文献   

11.
Rice (Oryza sativa L.) paddies are one of the major sources of atmospheric methane (CH4), a greenhouse gas. To elucidate the quantitative relationship between CH4 emission from rice paddies and temperature, 6 years data of CH4 emission from pot experiments were analyzed in terms of the sum of effective temperature (∑(T−15); T is the daily mean air temperature (°C)). The base temperature of 15 °C was adopted as the 0 °C physiological temperature for methanogens. Significant positive correlations between total CH4 emission throughout the rice growth period and ∑(T−15) were observed for pots with rice straw (RS) application at a rate of 6 g kg−1 soil, which corresponds to 6 t ha−1 (r=0.83071), and those without RS application (r=0.81871). It was confirmed that temperature is a major factor affecting the interannual variation in CH4 emission. For the 1993 and 1995 data sets that include seven and four levels of RS application, the relationship between seasonal CH4 emission and RS application rate could be expressed using linear functions (r=0.98871, 0.99671), the slopes of which were similar to each other. Based on these findings, we confirmed that the dependence of seasonal CH4 emission on both temperature and RS application rate can be described by a single linear equation.  相似文献   

12.
Close relationships among climatic factors and soil respiration (Rs) are commonly reported. However, variation in Rs across the landscape is compounded by site-specific differences that impede the development of spatially explicit models. Among factors that influence Rs, the effect of ecosystem age is poorly documented. We hypothesized that Rs increases with grassland age and tested this hypothesis in a chronosequence of tallgrass prairie reconstructions in central Iowa, U.S.A. We also assessed changes in root biomass, root ingrowth, aboveground net primary productivity (ANPP), and the strength of soil temperature and moisture in predicting Rs. We found a significant increase in total growing season Rs with prairie age (R2 = 0.79), ranging from 714 g C m?2 in the youngest reconstruction (age 4) to 939 g C m?2 in the oldest prairie (age 12). Soil temperature was a strong predictor of intra-seasonal Rs among prairies (R2 = 0.78–0.87) but mean growing season soil temperature and moisture did not relate to total Rs. The increase in Rs with age was positively correlated with root biomass (r = 0.80) and ANPP (r = 0.87) but not with root ingrowth. Our findings suggest that growing season Rs increases with tallgrass prairie age, root biomass, and ANPP during young grassland development.  相似文献   

13.
In this paper a shared control strategy is presented that allows a skilled operator to identify irregularities that occur during robotic friction stir welding (FSW) and assist the robotic system in producing an appropriate response. Human operators are adept at identifying disturbances; however, the complexity of the friction stir welding process makes it difficult for the operator to respond. While examining the capabilities of shared control in friction stir welding, this paper focuses on responding to defects that are caused by a lack of workpiece material during butt welding, such as gaps. A compensation strategy is presented that combines the human operator's perceptual strengths with an automated procedure for adjustment of the process parameters (i.e. travel angle and plunge depth). Experiments comparing four control strategies are performed while welding 5083-H116 aluminum. Through our experiments we demonstrate that if the FSW control task is appropriately shared between the human operator and the computer control system, the weld quality (strength) can be improved (from 9 ksi to 31 ksi for a gap size of 2.5 mm) as compared with the nominal case in which no corrections are made.  相似文献   

14.
The projected increase of atmospheric CO2 concentration [CO2] is expected to increase yield of agricultural C3 crops, but little is known about effects of [CO2] on lodging that can reduce yield. This study examined the interaction between [CO2] and nitrogen (N) fertilization on the lodging of rice (Oryza sativa L.) using free-air CO2 enrichment (FACE) systems installed in paddy fields at Shizukuishi, Iwate, Japan (39°38′N, 140°57′E). Rice plants were grown under two levels of [CO2] (ambient = 365 μmol mol−1; elevated [CO2] = 548 μmol mol−1) and three N fertilization regimes: a single initial basal application of controlled-release urea (8 g N m−2, CRN), split fertilization with a standard amount of ammonium sulfate (9 g N m−2, MN), and ample N (15 g N m−2, HN). Lodging score (six ranks at 18° intervals, with larger scores indicating greater bending), yield, and yield components were measured at maturity. The lodging score was significantly higher under HN than under CRN and MN, but lodging was alleviated by elevated [CO2] under HN. This alleviation was associated with the shortened and thickened lower internodes, but was not associated with a change in the plant's mass moment around the culm base. A positively significant correlation between lodging score and ripening percentage indicated that ripening percentage decreased by 4.5% per one-unit increase in lodging score. These findings will be useful to develop functional algorithm that can be incorporated into mechanistic crop models to predict rice production more accurately in a changing climate and with different cultural practices.  相似文献   

15.
Nitrous oxide (N2O) and ammonia (NH3) emissions from surface applied high (HN) and low (LN) nitrogen pig manures were measured under field conditions. Manures were band-spread to a winter wheat crop at three growth stages—mid-tillering, stem elongation and flag leaf emergence. The N2O flux rates were measured using the static chamber technique while NH3 volatilisation was assessed using a micrometeorological mass balance technique with passive flux samplers. The N2O emissions were episodic in nature with flux rates observed ranging from 2.8 to 31.5 g N2O–N ha?1 day?1 (P < 0.001). Higher N2O emissions generally occurred after rainfall events. Highest N2O losses were observed from the HN treatment with LN manure use decreasing emissions by 18% (P < 0.03). The NH3 volatilisation rates were highest within 1 h of manure application with 95% of emissions occurring within 24 h (P < 0.001). Cumulative N loss was highest at mid-tillering as low crop canopy cover and increased wind-speeds enhanced NH3 loss (P < 0.001). Highest emissions were measured from the HN manure (P < 0.03). Total ammoniacal N loss ranged from 6 to 11%. Crop N uptake and grain yield were unaffected by application timing or manure type. Therefore, the use of LN manures decreased gaseous emissions of N2O and NH3 without any adverse effects on crop performance.  相似文献   

16.
Tillage practices affect the fate of fertilizer nitrogen (N) through influencing transformations of N, but few studies have examined N2O and NH3 emissions, and N leaching from different rice tillage systems. Thus the objective of this study was to assess N2O emission, NH3 volatilization and N leaching from direct seeded rice in conventional tillage (CT) and no-tillage (NT) production systems in the subtropical region of China during the 2008 and 2009 rice growing seasons. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the sub-plot treatment, and there were four treatments: NT + no fertilizer (NT0), CT + no fertilizer (CT0), NT + compound fertilizer (NTC) and CT + compound fertilizer (CTC), respectively. Results showed that N fertilization significantly increased (p < 0.01) N2O emissions, NH3 volatilization and N leaching from rice fields in both years. In general, there was no significant difference in N2O emissions and NH3 volatilization between NT0 and CT0 in both years, while NTC had significantly higher (p < 0.05) N2O emissions and NH3 volatilization compared to CTC. Over the two rice growing seasons, NTC showed 32% and 47% higher N2O emissions, and 29% and 52% higher NH3 losses than CTC. Higher (p < 0.05) N2O emissions from NTC than CTC were presumably due to higher soil organic C and greater denitrification. Total N and NO3? concentrations were higher (p < 0.05) in CTC than NTC, but larger volumes of percolation water in NTC than CTC resulted in no significant difference in leakage of total N and NO3?. Hence, application of N fertilizer in combination with NT appeared to be ineffective in reducing N losses from N fertilizer in paddy fields.  相似文献   

17.
For the removal of phosphate (PO43 -) from water, an adsorbent was prepared via carbonization of sewage sludge from a wastewater treatment plant: carbonized sludge adsorbent (CSA). The mechanism of phosphate removal was determined after studying the structure and chemical properties of the CSA and its influence on phosphate removal. The results demonstrate that phosphate adsorption by the CSA can be fitted with the pseudo second-order kinetics and Langmuir isotherm models, indicating that the adsorption is single molecular layer adsorption dominated by chemical reaction. The active sites binding phosphate on the surface are composed of mineral particles containing Si/Ca/Al/Fe. The mineral containing Ca, calcite, is the main factor responsible for phosphate removal. The phosphate removal mechanism is a complex process including crystallization via the interaction between Ca2 + and PO43 -; formation of precipitates of Ca2 +, Al3 +, and PO43 -; and adsorption of PO43 - on some recalcitrant oxides composed of Si/Al/Fe.  相似文献   

18.
The study focuses on the efforts for minimization of burr formation and improvement of hole surface roughness in micro through-hole machining. It deals with the development of micro compound tool which is consisting of a micro flat drill as the drilling part and a micro diamond-electroplated-grinding part for hole finishing. The finishing diameters of each drilling and grinding parts of the fabricated micro compound tool are 90 μm and 100 μm, respectively. The study focuses mainly on the effect of drill point angle and ultrasonic vibration applied during micro hole machining to the hole entrance and exit burrs formation. The used workpiece is made of stainless steel (SUS304) with a thickness of 100 μm. From the experiment, it was found that the tool having drill point angle of 118° resulted in a smaller burr formation although hole machining was conducted for 600 holes. Furthermore, the application of ultrasonic vibration during hole machining could improve the performance of the developed micro compound tool and decreased the burr size, especially the exit burr.  相似文献   

19.
This paper evaluates the use of a nickel nanoparticle (NiNP) interlayer for making hermetic joints in 316L stainless steel substrates via diffusion brazing. Different NiNP inks were prepared using commercial nanopowder (~9 nm) and in-house synthesized nanoparticles. Syringe pump deposition of ~9 nm NiNP ink and diffusion brazing at 900 °C for 30 min under 2 MPa resulted in a hermetic joint up to the tested pressure of 70 psi. In-house synthesis of NiNPs was carried out in ethylene glycol by the reduction of NiCl2·6H2O in the presence of hydrazine (N2H4) as a reducing agent. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) results confirm the presence of pure fcc-Ni with an average particle size of 5.4 ± 0.9 nm. An as-synthesized suspension of NiNPs was patterned onto 316L stainless steel laminae via automated dispensing to a thickness of ~3 μm and bonded at 800 °C for 30 min at a pressure of 2 MPa. The diffusion-brazed test article was also found to be hermetic up to 70 psi. An examination of the bond line using scanning electron microscopy (SEM) showed good uniformity and continuity.  相似文献   

20.
In the United Kingdom, as with other European countries, land-based emissions of NOx and SO2 have fallen significantly over the last few decades. SO2 emissions fell from a peak of 3185 Gg S in 1970 to 344 Gg S in 2005 and are forecast by business-as-usual emissions scenarios to fall to 172 Gg by 2020. NOx emissions were at a maximum of 951 Gg N in 1970 and fell to 378 by 2005 with a further decrease to 243 Gg N forecast by 2020. These large changes in emissions have not been matched by emissions changes for NH3 which decreased from 315 Gg N in 1990 to 259 in 2005 and are forecast to fall to 222 by 2020. The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of sulphur and nitrogen deposition over the United Kingdom during a 15-year time period (1990–2005) and compared with measured deposition of sulphate, nitrate and ammonium from the national monitoring network. Wet deposition of nitrogen and sulphur was found to decrease more slowly than the emissions reductions rate. This is attributed to a number of factors including increases in emissions from international shipping and changing rates of atmospheric oxidation. The modelled time series was extended to a 50-year period from 1970 to 2020. The modelled deposition of SOx, NOy and NHx to the UK was found to fall by 87%, 52% and 25% during this period. The percentage area of sensitive habitats in the United Kingdom for which critical loads are exceeded is estimated to fall from 85% in 1970 to 37% in 2020 for acidic deposition and from 73% to 49% for nutrient nitrogen deposition. The significant reduction in land emissions of SO2 and NOx focuses further attention in controlling emissions from international shipping. Future policies to control emissions of ammonia from agriculture will be required to effect further significant reductions in nitrogen deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号