首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对黄麻生物脱胶废水浓度高、处理难度大的问题,采用水解酸化与膜生物反应器组合工艺对黄麻生物脱胶废水进行了处理试验。考察水解酸化池对COD、氨氮、木质素等的去除效果;并通过调节试验条件,考察水力停留时间、pH值、温度等因素对水解酸化效果的影响,得出处理黄麻生物脱胶废水的最佳实验条件。结果表明,水解酸化预处理工艺提高了废水的可生化性,对COD、氨氮均有较高的去处效率,对于降低纤维素的聚合度、促成纤维素的水解起到了关键的作用,为后续的好氧处理创造了有利条件。试验在水力停留时间10 h下,COD与氨氮去处率最高分别达35%,40%;影响水解酸化的因素主要为pH值和水力停留时间。  相似文献   

2.
微好氧水解酸化在石化废水预处理中的应用研究   总被引:3,自引:1,他引:2  
应用微好氧水解酸化技术对北方某石化污水厂进行了改造,投产后对其进行了跟踪监测.结果表明,在进水COD为490.3~673.2 mg·L-1,水力停留时间(HRT)为24 h以及溶解氧(DO)控制在0.2~0.35 mg·L-1条件下,监测阶段内COD的平均去除率为11.7%,出水和进水相比,BOD5/COD提高了12.4%,UV254值降低了11.2%,挥发性脂肪酸(VFA)浓度升高了23.0%.相对分子质量分布测定和好氧生物降解性试验结果表明:石化废水采用微好氧水解酸化预处理后,小分子有机物(1×103)所占比例由59.5%提高至82.1%,而大分子有机物(100×103)所占比例由31.8%降低到14.0%.经微好氧水解酸化预处理后降解性有显著提高,原水COD经48 h好氧处理可降至102.2 mg·L-1,而微好氧水解酸化出水COD经48 h好氧处理可降解至71.5 mg·L-1.微好氧水解酸化出水的SO2-4浓度[(930.7±60.1)mg·L-1]高于进水[(854.3±41.5)mg·L-1],表明微好氧环境对硫酸盐还原菌(SRB)有抑制作用.由于硫酸盐的还原受到抑制,减少有毒和恶臭类气体产生,改善了周围环境.  相似文献   

3.
采用好氧生化技术工艺研究了高效复合工程菌对焦化工业废水有机质的降解能力,并进行了单因素条件实验研究,通过调节生化时间、温度、PH值、进水有机物浓度等因素进行了一系列实验,实验结果表明:在选定条件下,好氧生化工艺COD的降解率最高可达80%以上,取得了最优工艺条件,为焦化废水治理提供了有价值的参数:  相似文献   

4.
为了有效去除难降解有机物,采用由微电解、EGSB、生物增浓等单元组成的复合工艺处理聚酯废水,分析了处理效果与主要工艺参数。结果表明:在填料填充率为80%、气水比为3、反应时间大于1 h条件下,微电解预处理工艺对COD去除率大于40%,B/C可提升至0.34;在水力停留时间(HRT)为12 h,上升流速为3.2 m/h的条件下,EGSB对COD平均去除率为62.9%;在填料填充率为40%、HRT=9.5 h的条件下,好氧生物增浓反应器的微生物浓度大于9 g/L,出水COD平均值为229 mg/L。  相似文献   

5.
活性翠蓝生物降解性能的试验研究   总被引:5,自引:2,他引:3  
通过试验比较了厌氧、好氧条件下活性污泥对活性翠蓝的生物降解机理、降解能力及受葡萄糖浓度影响的情况.结果表明厌氧菌不能单独降解活性翠蓝,只能通过共代谢作用降解活性翠蓝;而好氧菌既可以单独降解活性翠蓝(以活性翠蓝为唯一碳源时,20mg/L活性翠蓝的24h好氧降解率为37.4%),也可以通过共代谢作用降解活性翠蓝.葡萄糖浓度的升高对提高活性翠蓝的厌氧、好氧生物降解率均有利,当葡萄糖浓度为1200mg/L时,20mg/L活性翠蓝的24h厌氧、好氧降解率分别达到81.5%、73.6%.活性翠蓝浓度对厌氧菌、好氧菌的生物降解能力也有影响.当葡萄糖浓度分别为800mg/L、1200mg/L,活性翠蓝(浓度为20~100mg/L)的厌氧降解率比好氧降解率高4.9%~27.2%,说明厌氧菌对活性翠蓝的降解能力比好氧菌更强.  相似文献   

6.
采用好氧、缺氧、厌氧活性污泥对三氯生(TCS)进行降解,并研究降解动力学。试验采用人工配水,TCS初始浓度分别为50、100、200μg/L,将混合液悬浮固体浓度(MLSS)为2 200 mg/L的活性污泥200 mL加入锥形瓶中,置于转速为125 r/min,温度为(20±0.5)℃的恒温摇床里进行降解试验。结果表明,好氧、缺氧、厌氧活性污泥降解TCS的反应初期,TCS都会迅速吸附在活性污泥上,造成水相浓度迅速降低,泥相浓度迅速增加。好氧活性污泥能有效地降解TCS,反应7 d后,TCS的降解率达50%左右。好氧降解过程符合假一级反应动力学,反应速率常数为0.085 6 d~(-1),半衰期为8.095 d。好氧活性污泥对TCS的降解效果优于缺氧和厌氧活性污泥;缺氧活性污泥对TCS有少量的降解,降解率为20%左右;厌氧活性污泥不能有效地降解TCS。  相似文献   

7.
针对某化工厂液晶中间体生产废水,采用Fenton预处理+水解酸化+好氧+超滤反渗透工艺进行处理,发现Fenton技术具有良好的预处理效果,对COD的去除率在50%左右,且废水可生化性从原水的0.05提高至0.38,经过水解酸化及好氧单元的降解,废水ρ(COD)可降至150~200 mg/L,再通过超滤反渗透膜处理,COD浓度可降至50mg/L以下,达到GB/T 19923—2005《城市污水再生利用—工业用水水质》要求,出水可用作稀释水或厂内冷却用水。膜浓水通过自主研发的强化蒸发装置处理,可实现废水不外排。采用该工艺对厂内实际生产废水进行现场调试运行,处理规模为5 m~3/d,原水初始pH值为2.0~4.5,ρ(COD)为7 000~10 000 mg/L。稳定运行后,生化段出水pH值为7.5~8.0;ρ(COD)为150~200 mg/L,膜处理后ρ(COD)<50 mg/L,证明运行稳定可靠。  相似文献   

8.
采用预处理(H2O2热解+电催化)+生化(高负荷好氧+水解)处理制药厂高浓度蒸发浓缩废水。经过预处理原水COD可由810 000 mg/L降至650 000 mg/L,去除率为19.75%。稀释后的高浓度废水经过高负荷好氧+水解处理,在进水COD由500 mg/L逐步提高到超过8 000 mg/L,COD容积负荷4~5 kg/(m3·d)的条件下,生化整体COD去除率80%,进水COD为8 200 mg/L左右时,水解出水COD可以降至1 500 mg/L,处理效果良好。  相似文献   

9.
好氧处理工艺传质强化的机理与应用研究   总被引:4,自引:0,他引:4  
依据惯性效应理论研究了传统污水好氧处理工艺传质强化过程.研究表明,提高传统工艺曝气均匀度和控制多相物系中微涡漩的离心惯性效应,可有效促进物相接触传质和相界面更替,为活性污泥(或生物膜)有机底质与氧气进行生化反应提供良好动力条件,从而提高反应效率,缩短生化反应历程.该工艺在试验及实际工程应用中氧利用率最高可达48%,COD容积负荷8.1-9.0 kg/(m3@d).在处理屠宰废水的实际应用中,当气水比为12∶1,水力停留时间4 h,进水COD Cr浓度800-2200 mg/L,CODCr负荷达8-9 kg/(m3@d)时,COD Cr去除率平均达95%,BOD 5去除率大于97%,SS去除率在95%以上.  相似文献   

10.
微氧水解酸化处理石化废水的生物降解特性   总被引:6,自引:0,他引:6  
本研究采用微氧水解酸化技术处理石化废水,以抑制硫酸盐的还原,减少硫化氢的产生.同时,通过与厌氧水解酸化的对比试验,研究了微氧水解酸化的生物降解特性.微氧反应器的ORP控制在(-290±71)m V,厌氧反应器的ORP为(-398±31)m V.反应器运行近7个月的结果表明,在进水COD为202~514 mg·L-1、硫酸根浓度为350~650 mg·L-1及HRT为12 h时,微氧水解酸化反应器COD的平均去除率为31.2%,高于厌氧水解酸化的26.4%.厌氧出水的VFA浓度((2.34±0.60)mmol·L-1)高于微氧出水((1.89±0.48)mmol·L-1).微氧出水的平均比紫外吸收值(UV254/DOC)为0.017,显著低于厌氧出水(0.025),表明微氧环境可以提高兼性水解酸化菌的生理代谢功能,强化难降解芳香有机物和含共轭双键大分子化合物的去除.微氧水解酸化出水的硫离子浓度((0.11±0.04)mg·L-1)显著低于厌氧出水((1.27±1.22)mg·L-1).454焦磷酸测序结果表明:微氧水解酸化菌群中,变形菌门、绿弯菌门和放线菌门菌群丰度(所占比例分别为39.7%、20.3%、1.9%)高于厌氧水解酸化菌群(分别为36.9%、17.5%、1.3%),对难降解大分子有机物的去除效果好;厌氧水解酸化菌群中拟杆菌门和酸杆菌门所占比例较大,酸化效果更好.在属的水平上,微氧水解酸化污泥中鉴定出的硫酸盐还原菌的种群多样性和丰度均低于厌氧污泥,这与其出水较低的硫离子浓度一致,表明微氧环境能够有效抑制硫酸盐还原菌的活性.上述研究结果表明,微氧水解酸化是一种很有前途的石化废水预处理技术.  相似文献   

11.
生产规模中药废水两相厌氧生物处理工艺研究   总被引:8,自引:0,他引:8  
采用两相厌氧-好氧工艺系统治理哈尔滨中药二厂高浓度难降解有机生产废水,通过两相厌氧工艺的运行效果,分析了其在工艺系统中的作用.生产性试验突破了中药废水生物处理技术始终停留在原水COD低于5000mg/L、可生化性良好的易处理废水上的研究现状.现场调试运行结果表明:在进水浓度多为7000~40000mg/L且废水可生化性差(BOD5/COD<0.2)的情况下,产酸相反应器的日平均COD容积负荷可达到20~30kg/(m3·d),平均COD去除率为47.1%;产甲烷相反应器27d启动成功,其COD容积负荷可达到6.0~7.0kg/(m3·d),平均COD去除率为94.06%;两相厌氧工艺系统COD总去除率可达93.0%以上,是整个工艺系统出水达标排放的重要前提.  相似文献   

12.
采用电-多相臭氧催化(E-catazone)技术处理高COD、高含盐、难生化的金刚烷胺制药废水.对比研究电-多相臭氧催化、多相臭氧催化(Catazone)、电催化氧化(EO)对金刚烷胺制药废水的处理效果,在此基础上进一步研究了电流密度、pH值以及气相O3浓度对电-多相臭氧催化技术处理效果的影响,同时优化实验条件.实验结果表明,在原水pH值为12.5,电流密度为15mA/cm2,O3进气流速0.4L/min,O3浓度为60mg/L的条件下,经过60min反应,电-多相臭氧催化技术获得了62%的COD去除和44%的总有机碳(TOC)去除,其效果显著优于多相臭氧催化(COD 44%,TOC 29%)与电催化氧化(COD 13%,TOC 17%);同时,电-多相臭氧催化不仅氧化能力强,而且氧化速率快,获得的伪一级COD去除速率常数k是多相臭氧催化和电催化氧化的1.81倍和8.22倍,更为重要的是,电-多相臭氧催化技术还可以高效、快速地提高废水的生化性,提高约2个数量级,结果表明,电-多相臭氧催化技术是一种有潜力的高级氧化技术,可以实现高效、快速去除有机污染物以及提高废水的可生化性.  相似文献   

13.
对微波辅助均相催化氧化处理吡虫啉农药废水进行了研究,通过考察H2O2投加量、均相催化剂Fe2+浓度、微波辐照时间及功率、废水温度、废水pH值等因素对该农药废水COD处理效果的影响,获得了最佳工艺条件:即100ml初始COD浓度为268mg/L的农药废水,H202投加量为26.52g/L,均相催化剂Fe2+浓度为109.8mg/L,在微波功率119W,辐射时间为4min,pH为6的条件下,COD去除率可达78.51%。  相似文献   

14.
陈金华  马春燕  奚旦立  李琼 《环境工程》2011,29(2):36-39,44
采用催化超临界水氧化(CSCWO)技术对香料废水进行氧化处理,研究了催化剂浓度、反应温度、压力、停留时间等因素对废水COD、TN去除效果的影响.结果表明:在超临界水中添加cu2+催化剂后有机物的去除效率与无催化剂时相比有显著的提高.香料废水中COD、TN的去除率随催化剂浓度、反应温度和压力的升高,停留时间的延长而提高....  相似文献   

15.
介绍了“水解酸化+两级生物接触氧化”处理水产品加工废水的运行效果和工程实例,结果表明:对C l-浓度平均6000mg/L的高盐度水产品加工废水,系统对COD、SS、氨氮的去除率分别超过了88%、90%、85%,出水COD、SS、氨氮分别低于100mg/L、70mg/L、15mg/L,出水完全可以达到《污水综合排放标准》(GB8978-1996)一级排放标准。  相似文献   

16.
采用臭氧-紫外光-活性炭联用对糠醛废水进行了研究,实验考察了处理体系的pH值、糠醛废水的浓度、臭氧浓度、活性炭的使用次数以及臭氧-活性炭、臭氧-紫外光、臭氧-紫外光-活性炭联用几种不同工艺对糠醛去除效果的影响。结果表明,pH值为7.0、臭氧反应时间为160min、臭氧浓度为0.2mg/L,在此条件下进行处理,糠醛、废水的COD、BOD5的去除率可分别达到100%、54.3%、45.2%,废水的可生化性(BOD5/COD)由原来的0.37提高到0.61。活性炭可连续使用10次,对糠醛、废水COD的去除率没有太大影响。臭氧-紫外光-活性炭联用氧化糠醛废水的处理效果分别优于臭氧-活性炭、臭氧-紫外光联用。  相似文献   

17.
一体式MBR处理高氨氮小区生活污水中试研究   总被引:26,自引:0,他引:26  
在一体式MBR处理高浓度有机废水研究的基础上 ,针对高氨氮城市小区生活污水进行中试研究。着重研究了不同运行状况下处理效果、影响因素及膜通量的衰减规律。试验表明 :通过增设泥水回流和缺氧区可将氨氮去除率从60 %提高到 95 %以上 ,在进水CODCr为 3 3 0mg L、NH3为 10 0mg L时 ,出水CODCr和NH3分别低于 2 5mg L、5mg L ,且其它指标均达到生活杂用水水质标准 (CJ2 5 1 89)。  相似文献   

18.
对有机质浓度高,成分单一,蛋白质、总氮浓度较高,易酸化,且已酸化程度较高的大豆蛋白废水,确定以新型内循环厌氧反应池为主的处理工艺,在原废水ρ(COD)为11809~15040mg/L时,总出水浓度192~350mg/L,去除率达到96.2%~97.5%。新的内循环厌氧反应池具有高度小、结构简单、污染物去除率高的特征,COD运行负荷达6.0~7.5kg/(m3.d),COD去除率达88%~93%。当COD运行负荷5.0~7.0kg/(m3.d)时,该池内循环管道形成了连续的较强内回流。  相似文献   

19.
水解酸化+两级生物接触氧化处理高盐度水产品加工废水   总被引:1,自引:0,他引:1  
介绍了“水解酸化+两级生物接触氧化”处理水产品加工废水的运行效果和工程实例,结果表明:对C1^-浓度平均6000mg/L的高盐度水产品加工废水,系统对COD、SS、氨氮的去除率分别超过了88%、90%、85%,出水COD、SS、氨氮分别低于100mg/L、70mg/L、15mg/L,出水完全可以达到《污水综合排放标准》(GB8978—1996)一级排放标准。  相似文献   

20.
酵母菌对味精生产中离交尾液的处理初探   总被引:7,自引:4,他引:3  
通过富集培养并利用选择性培养基分离筛选到2种能适应味精生产过程中离交尾液(COD为40690mg/L,NH4+-N含量为16914mg/L)的酵母菌,经鉴定分属于嗜盐假丝酵母(Candida halophila)和粘红酵母(Rhodotorula glutinis).这二种菌混合培养时在pH4~9范围内其COD去除率均可达到80%以上;对于10倍、3倍、2倍稀释的离交尾液,48h之内,其COD去除率均可高达84.5%,日平均去除速度COD/SS均在1.0kg/(kg@d)以上,远高于对照的活性污泥法[对于10倍稀释液最高去除率为78.9%,去除速度为0.34kg/(kg·d)],同时也高于国内报道的其他酵母菌菌株.经处理后,还原糖可去除95.7%,而NH+4-N没有明显变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号