首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
A Zr-β-FeOOH adsorbent for both As(V) and As(III) removal was prepared by a chemical co-precipitation method.Compared with β-FeOOH,the addition of Zr enhanced the adsorption capacities for As(V) and As(III),especially As(III).The maximum adsorption capacities for As(III) and As(V) were 120 and 60mg/g respectively at pH 7.0,much higher than for many reported adsorbents.The adsorption data accorded with Freundlich isotherms.At neutral pH,for As(V),adsorption equilibrium was approached after 3 hr,while for As(III),adsorption equilibrium was approached after 5 hr.Kinetic data fitted well to the pseudo second-order reaction model.As(V) elimination was favored at acidic pH,whereas the adsorption of As(III) by Zr-β-FeOOH was found to be effective over a wide pH range of 4-10.Competitive anions hindered the adsorption according to the sequence:phosphate > silicate > bicarbonate > sulfate > nitrate,while Ca2+ and Mg2+ increased the removal of As(III) and As(V) slightly.The high adsorption capability and good performance in other aspects make Zr-β-FeOOH a potentially attractive adsorbent for the removal of both As(III) and As(V) from water.  相似文献   

2.
Phosphate removal from aqueous waste streams is an important approach to control the eutrophication downstream bodies of water. A Fe(III) coordinated amino-functionalized silicate adsorbent for phosphate adsorption was synthesized by a post-grafting and metal cation incorporation process. The surface structure of the adsorbent was characterized by X-ray di raction, N2 adsoropion/desoprotion technique, and Fourier transform infrared spectroscopy. The experimental results showed that the adsorption equilibrium data were well fitted to the Langmuir equation. The maximum adsorption capacity of the modified silicate material was 51.8 mg/g. The kinetic data from the adsorption of phosphate were fitted to pseudo second-order model. The phosphate adsorption was highly pH dependent and the relatively high removal of phosphate fell within the pH range 3.0–6.0. The coexistence of other anions in solutions has an adverse e ect on phosphate adsorption; a decrease in adsorption capacity followed the order of exogenous anions: F?? > SO2?? 4 > NO??3 > Cl??. In addition, the adsorbed phosphate could be desorbed by NaOH solutions. This silicate adsorbent with a large adsorption capacity and relatively high selectivity could be utilized for the removal of phosphate from aqueous waste streams or in aquatic environment.  相似文献   

3.
4.
Xonotlite was synthesized and tested for phosphate removal and recovery from synthetic solution in a batch mode. The e ects of pH, initial calcium concentration, bicarbonate concentration on phosphate removal through crystallization were examined. The morphology and X-ray di raction (XRD) pattern of xonotlite before and after crystallization confirmed the formation of crystalline hydroxyapatite. The results indicated that the crystallization product had a very high P content (> 10%), which is comparable to phosphate rock at the dosage of 50–200 mg xonotlite per liter, with a maximum P content of 16.7%. The kinetics of phosphate removal followed the second-order reaction equation. The phosphate removal ability increased with increasing pH. The precipitation of calcium phosphate took place when pH was higher than 7.2, whereas the crystallization occurred at pH 6.0. A high calcium concentration could promote the removal of phosphate via crystallization, while a high bicarbonate concentration also enhanced phosphate removal, through that the pH was increased and thus induced the precipitation process. When xonotlite was used to remove phosphate from wastewater, the removal e ciency could reach 91.3% after 24 h reaction, with removal capacity 137 mg/g. The results indicated that xonotlite might be used as an e ective crystal seed for the removal and recovery of phosphate from aqueous solution.  相似文献   

5.
This study was performed to investigate the removal of phosphate from domestic wastewater using a modified steel slag as the adsorbent. The adsorption effects of alkalinity, salt, water,and thermal modification were investigated. The results showed that thermal activation at 800℃ for 1 hr was the optimum operation to improve the adsorption capacity. The adsorption process of the thermally modified slag was well described by the Elovich kinetic model and the Langmuir isotherm model. The maximum adsorption capacity calculated from the Langmuir model reached 13.62 mg/g. Scanning electron microscopy indicated that the surface of the modified slag was cracked and that the texture became loose after heating. The surface area and pore volume did not change after thermal modification. In the treatment of domestic wastewater, the modified slag bed(35.5 kg) removed phosphate effectively and operated for 158 days until the effluent P rose above the limit concentration of 0.5 mg/L. The phosphate fractionation method, which is often applied in soil research, was used to analyze the phosphate adsorption behavior in the slag bed. The analysis revealed that the total contents of various Ca–P forms accounted for 81.4%–91.1%, i.e., Ca10–P 50.6%–65.1%, Ca8–P 17.8%–25.0%,and Ca2–P 4.66%–9.20%. The forms of Al–P, Fe–P, and O–P accounted for only 8.9%–18.6%. The formation of Ca10–P precipitates was considered to be the main mechanism of phosphate removal in the thermally modified slag bed.  相似文献   

6.
A novel adsorbent based on iron oxide dispersed over activated carbon(AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron(denoted as AC-Fe and AC/OFe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%–46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/OFe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.  相似文献   

7.
Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4+-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4+-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4+-N. Na+-impregnated ACs had a higher removal capability in removing NH4+-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4+-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.  相似文献   

8.
The adsorption behaviors of ammonium ions from aqueous solution by a novel bioadsorbent, the Boston ivy (Parthenocissus tricuspidata) leaf powder (BPTL) were investigated. The SEM images and FT-IR spectra were used to characterize BPTL. The mathematical models were used to analyze the adsorption kinetics and isotherms. The optimum pH range for ammonium adsorption by BPTL was found to be 5–10. The adsorption reached equilibrium at 14 hr, and the kinetic data were well fitted by the Logistic model. The intraparticle di usion was the main rate-controlling step of the adsorption process. The high temperature was favorable to the ammonium adsorption by BPTL, indicating that the adsorption was endothermic. The adsorption equilibrium fitted well to both the Langmuir model and Freundlich model, and the maximum monolayer adsorption capacities calculated from Langmuir model were 3.37, 5.28 and 6.59 mg N/g at 15, 25 and 35°C, respectively, which were comparable to those by reported minerals. Both the separation factor (RL) from the Langmuir model and Freundlich exponent (n) suggested that the ammonium adsorption by BPTL was favorable. Therefore, the Boston ivy leaf powder could be considered a novel bioadsorbent for ammonium removal from aqueous solution.  相似文献   

9.
A chemically prepared carbon was synthesized from date palm leaflets via sulphuric acid carbonization at 160℃. Adsorption of ciprofloxacin (CIP) from aqueous solution was investigated in terms of time, pH, concentration, temperature and adsorbent status (wet and dry). The equilibrium time was found to be 48 hr. The adsorption rate was enhanced by raising the temperature for both adsorbents, with adsorption data fitting a pseudo second-order model well. The activation energy, Ea, was found to be 17 kJ/mol, indicating a diffusion-controlled, physical adsorption process. The maximum adsorption was found at initial pH 6. The wet adsorbent showed faster removal with higher uptake than the dry adsorbent, with increased performance as temperature increased (25-45℃). The equilibrium data were found to fit the Langmuir model better than the Freundlich model. The thermodynamic parameters showed that the adsorption process is spontaneous and endothermic. The adsorption mechanism is mainly related to cation exchange and hydrogen bonding.  相似文献   

10.
A novel nanoadsorbent for the removal of heavy metal ions is reported.Cotton was first hydrolyzed to obtain cellulose nanocrystals(CNCs).CNCs were then chemically modified with succinic anhydride to obtain SCNCs.The sodic nanoadsorbent(NaSCNCs) was further prepared by treatment of SCNCs with saturated NaHCO 3 aqueous solution.Batch experiments were carried out with SCNCs and NaSCNCs for the removal of Pb 2+ and Cd 2+.The effects of contact time,pH,initial adsorption concentration,coexisting ions and the regeneration performance were investigated.Kinetic studies showed that the adsorption equilibrium time of Pb 2+ and Cd 2+ was reached within 150 min on SCNCs and 5 min on NaSCNCs.The adsorption capacities of Pb 2+ and Cd 2+ on SCNCs and NaSCNCs increased with increasing pH.The adsorption isotherm was well fitted by the Langmuir model.The maximum adsorption capacities of SCNCs and NaSCNCs for Pb 2+ and Cd 2+ were 367.6 mg/g,259.7 mg/g and 465.1 mg/g,344.8 mg/g,respectively.SCNCs and NaSCNCs showed high selectivity and interference resistance from coexisting ions for the adsorption of Pb 2+.NaSCNCs could be efficiently regenerated with a mild saturated NaCl solution with no loss of capacity after two recycles.The adsorption mechanisms of SCNCs and NaSCNCs were discussed.  相似文献   

11.
研究了沉淀pH值分别为4.8、8.0和10.6条件下制备的水合氧化锆对水中磷酸盐的吸附作用,结果表明,共存的Na~+仅仅略微促进了沉淀pH值为4.8和8.0时所得水合氧化锆对水中磷酸盐的吸附,却明显促进了沉淀pH值为10.6时所得水合氧化锆对磷酸盐的吸附.共存的Ca~(2+)仅仅略微促进了沉淀pH值为4.8时水合氧化锆对磷酸盐的吸附,却极大地促进了沉淀pH值为8.0和10.6时水合氧化锆对磷酸盐的吸附.共存的HCO_3~-和SO_4~(2-)抑制了水合氧化锆对磷酸盐的吸附,且它们对沉淀pH值为4.8时水合氧化锆吸磷的抑制作用明显大于对沉淀pH值为8.0和10.6时水合氧化锆的抑制作用.不同沉淀pH值条件下制备的水合氧化锆对水中磷酸盐的吸附能力均随着溶液pH值的增加而降低.不同沉淀pH值条件下所得水合氧化锆对水中磷酸盐的吸附平衡数据可以采用Langmuir、Freundlich和Dubinin-Redushckevich(D-R)等温吸附模型加以描述.存在Na+而不存在Ca~(2+)情况下,3种不同沉淀pH值条件下所得水合氧化锆对中性溶液中磷酸盐的最大单层吸附容量差别不大;存在Ca~(2+)情况下,沉淀pH值为8.0和10.6时所得水合氧化锆对中性溶液中磷酸盐的最大单层吸附容量远远高于沉淀pH值为4.8时制备的水合氧化锆.沉淀pH值为4.8和8.0时所得水合氧化锆的吸磷机制主要是表面氯和羟基基团与磷酸盐之间的配位体交换作用,而沉淀pH值为10.6时所得水合氧化锆的吸磷机制主要是表面羟基基团与磷酸盐之间的配位体交换作用.以上研究结果显示,与沉淀pH值为4.8时制备的水合氧化锆相比,沉淀pH值为8.0和10.6时制备的水合氧化锆更加适合作为吸附剂去除废水中的磷酸盐.  相似文献   

12.
粉煤灰合成沸石同步脱氨除磷特性的研究   总被引:19,自引:1,他引:18  
利用粉煤灰合成沸石,研究其在同步去除氮、磷方面的特性.合成沸石对氨氮和磷酸盐的吸附净化均随时间增加而变化,但均在24h后基本达到平衡.随合成沸石投加量的增加,同步去除污水中氮磷的效果越好,但在投加量为8 g·L-1以上时去除率的增加明显放慢.在pH为7~9时氨氮去除率最高(约60%),超过此pH范围时去除率降低.在pH 7~9范围磷去除率达最低(约为85%),超过此pH范围时去除率增加(最高达到近100%).合成沸石对氨氮的吸附为放热反应,对磷的吸附为吸热反应.不同阳离子饱和的合成沸石对氨氮的吸附顺序依次为:Al>Mg>Ca>Na>Fe,对磷的吸附顺序则为:Al>Fe>Ca>Mg>Na.合成沸石的氨氮吸附机理为阳离子交换作用,对磷的去除除化学沉淀作用外尚有吸附机制.  相似文献   

13.
Discharge of wastewater containing nitrogen and phosphate can cause eutrophication. Therefore, the development of an efficient material for the immobilization of the nutrients is important. In this study, a low calcium fly ash and high calcium fly ash were converted into zeolite using the hydrothermal method. The removal of ammonium and phosphate that coexist in aqueous solution by the synthesized zeolites were studied. The results showed that zeolitized fly ash could efficiently eliminate ammonium and phosphate at the same time. Saturation of zeolite with Ca2+ rather than Na+ favored the removal of both ammonium and phosphate because the cation exchange reaction by the NH4 + resulted in the release of Ca2+ into the solution and precipitation of Ca2+ with PO4 3− followed. An increase in the temperature elevated the immobilization of phosphate whereas it abated the removal of ammonium. Nearly 60% removal efficiency for ammonium was achieved in the neutral pH range from 5.5 to 10.5, while the increase or decrease in pH out of the neutral range lowered the adsorption. In contrast, the removal of phosphate approached 100% at a pH lower than 5.0 or higher than 9.0, and less phosphate was immobilized at neutral pH. However, there was still a narrow pH range from 9.0 to 10.5 favoring the removal of both ammonium and phosphate. It was concluded that the removal of ammonium was caused by cation exchange; the contribution of NH3 volatilization to immobilization at alkaline conditions (up to pH level of 11.4) was limited. With respect to phosphate immobilization, the mechanism was mainly the formation of precipitate as Ca3(PO4)2 within the basic pH range or as FePO4 and AlPO4 within acidic pH range.  相似文献   

14.
利用离子交联和自由基聚合反应制备了一种海藻酸锆/聚(N-异丙基丙烯酰胺)半互穿网络凝胶球(ZA/PNIPAM),用于吸附水中的磷酸盐.考察了溶液初始pH、吸附剂投加量、初始磷酸盐浓度和共存阴离子等因素对凝胶球吸附性能的影响.结果表明:ZA/PNIPAM在pH=2时可获得较大的吸附能力;随着投加量的减少、初始磷酸盐浓度的升高,凝胶球的吸附性能逐渐增大;SO_4~(2-)对吸附性能影响较Cl~-和NO_3~-明显.准二级动力学模型和颗粒内部扩散模型可以较好地拟合动力学吸附数据,表明表面吸附和颗粒内部扩散是吸附速率的主要控制步骤.吸附等温线数据可以较好地被Freundlich模型描述,表明吸附过程为非均匀多分子层吸附.FTIR、XPS、零电荷点(pH_(pzc))的结果以及相关吸附数据揭示凝胶球吸附磷酸盐的机制为静电吸附(物理吸附)以及配位交换(化学吸附)的共同作用.经过4次循环再生后,ZA/PNIPAM吸附性能保持稳定,具有良好的重复使用性.  相似文献   

15.
采用共沉淀法制备了一种新型铁铜铝三元复合氧化物吸附剂,系统研究了其对磷的吸附行为,并对吸附磷前后的吸附剂进行了表征.吸附实验结果表明,铁铜铝三元复合氧化物对磷具有优异的吸附去除效能,Freundlich吸附等温线模型能更好地拟合其对磷的吸附,最大吸附量为62.6 mg·g-1(pH=7.0),显著高于多数文献报道的磷吸附剂;吸附速率较快,吸附动力学更符合Elovich模型;溶液pH对磷吸附有一定影响,随着pH的升高,磷吸附量降低,离子强度则影响不大;共存阴离子对磷吸附具有抑制作用,影响的大小顺序为SiO_3~(2-)SO_4~(2-)CO_3~(2-)Cl~-,而共存阳离子Ca2+和Mg2+则对磷吸附略有促进作用.Zeta电位、红外谱图(FTIR)和X射线光电子能谱(XPS)表征分析表明,磷在铁铜铝三元复合氧化物表面发生了特性吸附,磷酸根主要通过取代复合氧化物表面的羟基形成内表面络合物而被吸附去除.溶出实验结果表明,当pH在5.0~8.5范围内,Fe~(3+)、Cu~(2+)、Al~(3+)的溶出量均较低.由此可知,铁铜铝三元复合氧化物是一种具有良好应用前景的除磷吸附剂.  相似文献   

16.
鸟粪石-沸石复合材料对水中镉的吸附性能研究   总被引:2,自引:0,他引:2  
研究以氧化镁负载沸石回收污水中氮磷得到的鸟粪石-沸石复合材料(STR-NZ)为吸附剂,用于对水体中重金属镉的吸附去除.实验采用SEM-EDS、XRD和FTIR等手段对STR-NZ材料进行表征,并考察了投加量、初始pH和反应时间等对STR-NZ材料去除水中Cd~(2+)的影响.结果表明:氧化镁负载沸石材料主要以鸟粪石沉淀的方式实现对水中磷酸盐和氨氮的回收;STR-NZ对水溶液中Cd~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,当Cd~(2+)的初始浓度为50 mg·L~(-1)时,STR-NZ的最佳投加量为0.2 g·L~(-1),Cd~(2+)最大吸附量为249.35 mg·g~(-1), STR-NZ对Cd~(2+)的吸附动力学符合准二级动力学模型,对Cd~(2+)的等温吸附符合Langmuir等温吸附模型,STR-NZ主要通过Cd_5(PO_4)_3(OH)沉淀的方式实现对水中Cd~(2+)的去除.  相似文献   

17.
铁锰复合氧化物包覆海砂的吸附除磷研究   总被引:6,自引:1,他引:5       下载免费PDF全文
利用铁锰复合氧化物包覆海砂制备了一种用于污水除磷的新型颗粒状吸附剂,并对其表面特性与磷吸附行为进行了研究.扫描电镜(SEM)分析结果表明,包覆后海砂颗粒表面凹凸不平且多孔,BET比表面积由0.06增至2.52 m2·g-1.磷吸附实验结果表明,包覆后海砂对磷的吸附能力显著提高,最大吸附容量为1.01~1.23 mg·g-1,优于多数文献报道的负载改性砂颗粒吸附剂;吸附动力学更符合准二级动力学方程,推测磷在包覆海砂表面发生了化学吸附;溶液p H对磷吸附有一定影响,离子强度则影响不大;共存阴离子对磷吸附影响的大小顺序为Si O2-3CO2-3F-SO2-4Cl-.  相似文献   

18.
改性颗粒活性炭对水中溴酸根的吸附特性研究   总被引:3,自引:3,他引:0  
采用阳离子表面活性剂氯化十六烷基吡啶(CPC)改性颗粒活性炭以提高活性炭对溴酸根的吸附能力.通过小试研究了改性颗粒活性炭(GAC-CPC)对溴酸根的吸附特性,考察了BrO-3初始浓度、pH、共存阴离子等因素对吸附过程的影响.结果表明,CPC改性能显著提高GAC对BrO-3的吸附能力,吸附量随着初始浓度升高而增大;在碱性条件下GAC-CPC对BrO-3的吸附量减小;共存阴离子与BrO-3在GAC-CPC上存在竞争吸附,其影响顺序为:NO-3SO2-4PO3-4CO2-3.用准一级、准二级和颗粒内扩散动力学模型拟合GAC-CPC吸附BrO-3的动力学过程,结果表明,准二级动力学能更好的描述吸附过程,且孔扩散可能是改性GAC吸附BrO-3初始阶段的主要速率控制因素.用Langmuir和Freundlich等温吸附模型拟合不同温度下BrO-3的吸附平衡过程,结果表明,Langmuir等温吸附模型能很好的描述吸附平衡过程,GAC-CPC吸附BrO-3的过程是自发且放热的,温度升高不利于吸附.  相似文献   

19.
Zn系LDHs覆膜改性人工湿地沸石基质除磷机制   总被引:6,自引:4,他引:2  
选择Zn系层状双金属氢氧化物(LDHs),采用水热-共沉淀法合成3种不同类型的Zn-LDHs(Fe Zn-LDHs、Co Zn-LDHs和Al Zn-LDHs)并覆膜于常用人工湿地沸石基质表面;利用模拟垂直流人工湿地小试系统,对原始沸石及3种Zn-LDHs覆膜改性沸石基质进行除磷净化实验、等温吸附-解吸实验以及动力学吸附实验,通过上述实验对以Zn-LDHs覆膜改性沸石基质为代表的改性基质除磷机制进行研究.结果表明,Zn-LDHs覆膜改性沸石基质对磷素净化效果具有明显的提升功能,其中以Fe Zn-LDHs覆膜改性基质尤为突出;改性使基质的饱和吸附容量得以提高,增强了基质对磷酸盐的解吸性能,并使沸石基质对磷酸盐的主要吸附类型由物理吸附向化学吸附转换;通过对沸石基质类型及其改性方式的合理选择,可达到利用沸石人工湿地强化除磷以高效净化富营养化水体的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号