首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 131 毫秒
1.
In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter(PM) and the source samples were collected in Zhuzhou, Hunan Province from December 2011 to January 2012 and the results were discussed and interpreted. Atmospheric particles were collected with different sizes by a cascade impactor. The concentrations of heavy metals in atmospheric particles of different sizes, collected from the air and from factories, were measured using an inductively coupled plasma mass spectrometry(ICP-MS). The results indicated that the average concentration of PM, chromium(Cr), arsenic(As), cadmium(Cd) and lead(Pb) in PM was177.3 ± 33.2 μg/m~3, 37.3 ± 8.8 ng/m~3, 17.3 ± 8.1 ng/m~3, 4.8 ± 3.1 ng/m~3 and 141.6 ± 49.1 ng/m~3,respectively. The size distribution of PM displayed a bimodal distribution; the maximum PM size distribution was at 1.1–2.1 μm, followed by 9–10 μm. The size distribution of As, Cd and Pb in PM was similar to the distribution of the PM mass, with peaks observed at the range of1.1–2.1 μm and 9–10 μm ranges while for Cr, only a single-mode at 4.7–5.8 μm was observed. PM(64.7%), As(72.5%), Cd(72.2%) and Pb(75.8%) were associated with the fine mode below 2.1 μm,respectively, while Cr(46.6%) was associated with the coarse mode. The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and zinc smelting sources.  相似文献   

2.
A typical Printed Circuit Board(PCB) manufacturer was chosen as the object of this study.During PCB processing, fine particulate matter and heavy metals(Cu, Zn, Pb, Cr, Cd and Ni)will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle(TSP), PM10 and PM2.5in the off-site were 106.3, 90.0 and 50.2 μg/m3, respectively, while the concentrations of TSP, PM10 and PM2.5in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to212.3 μg/m3, respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu 〉 Pb(Cr) 〉 Ni 〉 Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu(which ranged from 4.02 to 56.31 mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to0.078 mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10-6, except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry.  相似文献   

3.
Through field sampling of atmospheric dustfall in regions of Zhuzhou City, China for a period of one year, the deposition fluxes of atmospheric dustfall and five heavy metals contained inside, including Cr, As, Cd, Hg and Pb, were analyzed. Meanwhile the enrichment factor and index methods were used to analyze the pollution characteristics of heavy metals of atmospheric dustfall in Zhuzhou. The annual deposition flux of atmospheric dustfall in Zhuzhou was 50.79 g/(m~2·year), while the annual deposition fluxes of Cr, As, Cd, Hg and Pb were 9.80, 59.69, 140.09, 0.87 and 1074.91 mg/(m~2·year), respectively.The pollution level of atmospheric dustfall in Zhuzhou was relatively lower compared with most other cities in China, but the deposition fluxes of As, Cd, Hg and Pb in atmospheric dustfall in Zhuzhou were much higher than that in most cities and regions around the world. Cd is the typical heavy metal element in atmospheric dustfall in Zhuzhou, and both the enrichment factor and pollution index of Cd were the highest. Cd, Hg, Pb and As in atmospheric dustfall were mainly from human activities. According to the single-factor index, Nemerow index and pollution load index analyses, the atmospheric dustfall in Zhuzhou could easily cause severe heavy metal pollution to urban soil, and the most polluting element was Cd, followed by Pb, As and Hg. Only the pollution level of Cr lay in the safety region and mainly originated from natural sources.  相似文献   

4.
Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) 〉 As (58.1%) 〉 Cd (57.9%) 〉 Zn (57.7%) 〉 Cu (55.8%) 〉 Ni (53.5%) 〉 Cr (52.2%) 〉 Mn (49.2%) 〉 V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO42- etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.  相似文献   

5.
The horizontal distribution and levels of heavy metals in the biggest snowstorm in Shenyang since 1904 were investigated by analyzing 4 metals (As,Cd,Pb,and Cu) in a series of ultraclean samples collected from 17 sites distributed in different regions of the Shenyang area,China.The results showed that the concentrations of all the 4 heavy metals in snow from the industrial regions were high,up to 7.3 (As),2.2 (Cd),850.0 (Pb),and 0.197-20.2 (Cu)μg/kg,respectively.In the suburb,in contrast,their concentrat...  相似文献   

6.
The 360 feed and manure samples were collected from 150 animal farms in Jiangsu Province, China and analyzed for heavy metals. Concentrations of Zn and Cu in animal feeds were 15.9-2041.8 and undetected-392.1 mg/kg respectively, while Hg, As, Pb, Cd, and Cr in all feeds were below 10 mg/kg. Concentrations of Cu, Zn, and Cr in animal manures were 8.4-1726, 39.5-11379, and 1.0-1602 mg/kg respectively, while As, Cd, Hg, and Pb were 〈 10 mg/kg. The concentration of Cu, Zn, As and Cr in animal feed and manure were positively correlated (p 〈 0.001), but the Cd, Hg, and Pb were not statistically correlated between the feed and the manure. Concentrations of Cu and Zn were highest in pig feed and manure, followed by poultry and dairy feeds and manures. During 1990- 2008, Cu, Zn, As, Cr, Cd contents increased by 771%, 410%, 420%, 220%, and 63% in pig manure, 212%, 95%, 200%, 791%, and -63% in dairy manure, and 181%, 197%, 1500%, 261, and 196% in poultry manure. Most of the increases occurred from 2002 to 2008, which reflects the extensive use of feed additives after 2002. In contrast, Pb and Hg in manures continuously decreased from 1990 to 2008. The results suggest that the heavy metal contents in animal manure have been greatly increased over 18 years and the contribution of manures to soil should be considered.  相似文献   

7.
Topsoil samples from 61 sites around the Guanting Reservoir,China,were measured for Cu,Zn,Cr,Ni,Cd,Pb and As concentrations.The mean concentrations of Cu,Zn,Cr,Ni,Cd,Pb and As were 16.8,59.4,37.8,18.3,0.32,20.1 and 8.67 mg/kg dry weight,respectively.Factors that influence the dynamics of these metals in soils around the watersheds of Beijing reservoirs were examined.The influence of atmospheric deposition,land use,soil texture,soil type and soil chemical parameters on metal contents in soils was investigated.Atmospheric deposition,land use and soil texture were the important factors affecting heavy metal residues.Soil type and soil chemical parameters were also involved in heavy metal retention in soils.The data provided in this study are considered crucial for reservoir remediation,especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.  相似文献   

8.
A detailed investigation of seven heavy metals (Cu, Cd, Cr, As, Pb, Zn, Ni) in the water column, interstitial water and surface sediment was conducted to quantify the extent of their contamination in Taihu Lake. Results showed the average total concentrations ranged from 0.93 μg/L for Cd to 47.03 μg/L for Zn. The dissolved concentrations in the overlying water ranged from 0.06 μg/L for Cd to 15.86 μg/L for Zn. The metals in the Taihu Lake surface water were primarily in the particulate phase, especially for Cd, whose particulate concentration represented 94.3% of the total. In the surface sediment, the mean concentrations for Cr, Ni, Cu, Zn, As, Cd and Pb were 41.50, 28.72, 27.82, 65.46, 5.94, 0.82 and 41.17 mg/kg, respectively. The metals in the water column and sediments of Taihu Lake displayed significant spatial variations, and the higher metal concentrations mainly occurred in the north and west of Taihu Lake, especially in Zhushan Bay and West Taihu Lake. A quality assessment indicated that most of the metals in the surface water of Taihu Lake had no or low adverse health effects on organisms, except for Pb and Cu, which may cause chronic toxicity. Compared with the "Consensus-Based Sediment Quality Guidelines", the polluting metals were Cr, Ni and Cd, and the polluted regions were confined to Zhushan Bay, Meiliang Bay and the west of Taihu Lake, especially for north of Zhushan Bay. The polluted areas for Cr, Ni and Cd were 14.36, 34.70 and 13.24 km2, respectively. We suggest that Cr, Ni, and Cd in the polluted areas should be addressed and that tissue chemistry and sediment toxicity assessments be performed as soon as possible.  相似文献   

9.
The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr 〉 Mn 〉 Ni 〉 Zn 〉 Cd 〉 Cu 〉 Pb and Cd 〉 Ni 〉 Mn 〉 Cr 〉 Cu 〉 Pb 〉 Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.  相似文献   

10.
Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments(RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size(150 μm) were the dominant fraction. The length of dry period was one of the main factors affecting the particle size distribution, as indicated by the variation of size fraction with the increase of dry days. The amount of heavy metal(i.e., Cu, Zn, Pb and Cd) content was the largest in particles with small size(150 μm) among all samples. Specifically, the percentage of Cu, Zn, Pb and Cd in these particles was 74.7%, 55.5%, 56.6% and 71.3%, respectively.Heavy metals adsorbed in sediments may mainly be contributed by road traffic emissions. The contamination levels of Pb and Cd were higher than Cu and Zn on the basis of the mean heavy metal contents. Specifically, the geoaccumulation index(I geo) decreased in the order:CdPbCuZn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: CdZn≈PbCu.  相似文献   

11.
2011~2012北京大气PM2.5中重金属的污染特征与来源分析   总被引:14,自引:12,他引:2       下载免费PDF全文
为研究北京PM_(2.5)中重金属污染特征,于2011年夏季~2012年夏季每3 d采集一次PM_(2.5)样品.利用电感耦合等离子体质谱(ICP-MS)分析了Li、V、Cr、Mn、Co、Cu、Zn、As、Se、Ti、Ga、Ni、Sr、Cd、In、Ba、Tl、Pb、Bi和U的浓度,选取其中Zn、Pb、Mn、Cu、As、V和Cr 7种主要重金属元素进行深入讨论.北京市PM_(2.5)中重金属Zn、Pb、Mn、Cu、As、V和Cr的平均质量浓度分别为(331.30±254.52)、(212.64±182.06)、(85.96±47.00)、(45.19±27.74)、(17.13±19.02)、(4.92±3.38)和(9.04±7.84)ng·m-3.采样期间秋冬季节PM_(2.5)中重金属污染较春夏季节严重,这可能与北京秋冬季节取暖导致煤燃烧增加有关.霾过程会加剧北京PM_(2.5)中主要重金属Zn、Pb、Mn、Cu、As、V和Cr的污染,霾天对重金属污染的增加作用呈现一定的季节变化特征.源分析结果表明北京大气颗粒物中重金属主要来源于扬尘(包括建筑扬尘和道路扬尘)和煤燃烧,少量来自远距离输送和其他工业来源.  相似文献   

12.
为探讨曹妃甸采暖期和非采暖期PM2.5中Cr、Pb、As和Cd元素的污染特征、来源及健康风险,以华北理工大学曹妃甸校区为研究地点,于2017年12月—2018年10月采集98份PM2.5样品.利用重量法测定空气中PM2.5浓度,使用电感耦合等离子体质谱仪分析PM2.5中4种重金属元素(Cr、Pb、As和Cd)的浓度;采用Wilcoxon Mann-Whitney U检验比较采暖期与非采暖期,以及PM2.5超标日与非超标日各元素含量的差异,利用Kruskal-Wallis H检验法比较不同PM2.5浓度分级下4种金属元素浓度差异,用PMF(正定矩阵因子分解)模型对4种重金属元素的来源及贡献率进行解析,并用美国环境保护局推荐的人体暴露健康风险评价模型进行健康风险评估.结果表明:①曹妃甸采暖期PM2.5及Pb、As和Cd浓度均高于非采暖期,而Cr浓度略低于非采暖期.②PM2.5超标日Pb、As和Cd浓度均高于非超标日,不同PM2.5浓度级别下Pb、As和Cd浓度有所差异,且Pb、As和Cd浓度随PM2.5浓度的增加而增加.③PMF模型源解析表明,燃煤源及交通源是曹妃甸采暖期PM2.5金属元素主要来源,二者贡献率分别为50.4%和31.7%;工业源及交通源是非采暖期PM2.5金属元素的主要来源,二者贡献率分别为47.4%和37.0%.④健康风险评价结果表明,采暖期和非采暖期4种重金属元素的非致癌风险值均小于1.采暖期3种致癌性重金属(Cr、As和Cd)对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平(1×10-6);非采暖期Cr和As对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平;重金属非致癌风险(Cr、Pb、As和Cd)和致癌风险(Cr、As和Cd)指数高低均呈成年男性>成年女性>儿童青少年的特征.研究显示,在采暖期和非采暖期曹妃甸PM2.5中Pb、As和Cd浓度随PM2.5浓度的增加而增加,燃煤源和工业源是其主要来源,Cr、As和Cd对人群存在一定的致癌风险.   相似文献   

13.
为研究有色冶炼工业园区周边道路扬尘中重金属污染特征及其健康风险,在云南省蒙自地区采集了城市道路、有色冶炼工业园区道路以及隧道尘样品,通过再悬浮设备将尘样悬浮至Teflon滤膜上获得PM_(2.5)和PM_(10)样品,并利用ICP-MS分析了Cr、Mn、Ni、Cu、Zn、As、Cd和Pb这8种重金属的含量.结果表明,在PM_(2.5)中重金属的平均含量高于PM_(10).Pb、Cd、As和Zn在3种道路扬尘中平均含量最高,且在不同道路扬尘中平均含量差异表现为:隧道工业园区道路城市道路.隧道扬尘中Pb和As的平均含量高于其它重金属,在PM_(2.5)中达到92 338.3 mg·kg~(-1)和12 457.7 mg·kg~(-1);工业园区道路扬尘中Pb和Zn的平均含量最高,在PM_(2.5)中分别是4 381.7 mg·kg~(-1)和4 685.0 mg·kg~(-1);城市道路平均含量最高的重金属是Zn和Pb,在PM_(2.5)中为1 952.6 mg·kg~(-1)和1 944.8 mg·kg~(-1), 3种道路扬尘中Cu、Zn、As、Cd和Pb平均含量均高于云南省土壤背景值.富集因子分析和主成分分析结果显示:Cu、Zn、As、Cd和Pb在3种道路上均有明显富集,受到有色冶炼工业和交通源的显著影响;而Cr、Mn和Ni在3种道路上富集不明显,未受到明显的人为源影响.健康风险评价结果表明,摄食是主要的暴露途径;儿童的非致癌风险高于成人.在PM_(2.5)道路扬尘中所含有的As、Cd和Pb都会对成人和儿童造成非致癌风险,在PM_(10)工业园区道路和隧道扬尘中的As、Cd和Pb对人体有非致癌风险,城市道路中的As仅对儿童有非致癌风险.此外,隧道中的As具有致癌风险.  相似文献   

14.
于2009年4、7、10月和2010年1月在北京城区采集了PM2.5样品,采用电感耦合等离子体质谱仪分析得到29种金属元素,对7种致癌重金属浓度、富集程度及其可能的来源进行了分析.结果表明,7种致癌重金属As、Cd、Co、Cr、Ni、Pb和Se年均值浓度分别为(11.6±14.0)、(2.6±2.4)、(1.0±0.7)、(11.3±9.4)、(4.0±2.4)、(142.5±98.9)、(3.3±2.2)ng·m-3,其中仅As年均值浓度超过WHO参考限值的0.8倍.7种致癌重金属仅As、Cd、Pb和Se等4种重金属有明显富集现象,富集因子均超过500,其中夏季富集因子明显高于其它季节.春、秋和冬季4种高富集致癌重金属主要来源于北京周边的燃煤和城区机动车排放,夏季则主要来源于区域性污染源的输送.  相似文献   

15.
某焦化厂周边大气PM10重金属来源及健康风险评价   总被引:10,自引:5,他引:5       下载免费PDF全文
为了解焦化厂周边大气PM10中重金属的来源及健康风险,于2012年6月采集了某焦化厂周边的PM10.使用微波消解-ICP-MS方法进行重金属含量的检测,并采用美国EPA人体暴露风险评价模型对大气颗粒物重金属进行人群健康风险的初步评价.结果表明,焦化厂周边PM10中10种重金属元素的浓度变化范围较大,在3.06×10-5~1.77×10-2mg·m-3之间,其中Cr的浓度最高,Co的浓度最低,致癌物质的浓度高于非致癌物质的浓度.焦化厂是其周边大气PM10重金属的主要来源,Ni是其主要的污染重金属.健康风险评价结果显示,成人的致癌风险比儿童大,工业区和学校存在较大致癌风险.而儿童的非致癌风险是最大的,居住区的非致癌风险不容忽视.致癌物质中Cd、Cr和As存在较大的潜在致癌风险,Ni和Co存在一定的潜在风险,非致癌物质中Mn的非致癌风险很大,应引起相关部门的重视.  相似文献   

16.
为探讨珠海市郊区大气环境PM2.5中主要元素尤其是重金属的污染特征及其健康风险,于2014~2015年选取春、夏、秋、冬季4个典型月采集了PM2.5样品.利用X射线荧光光谱法分析得到15种元素的含量,进一步利用富集因子和主成分分析方法分析其来源,并采用US EPA环境健康风险评价模型评估痕量重金属的健康风险.结果表明:大气PM2.5中地壳元素(Al、Si、Ca、Fe、Ti)总质量浓度在春、夏、秋、冬季典型月分别为(708±213)、(645±269)、(1155±503)和(1466±492)ng·m-3,痕量重金属元素(Ba、Co、Cr、Cu、Mn、Ni、Pb、Sb、V、Zn)总质量浓度在春、夏、秋、冬典型月分别为(271±124)、(163±87.6)、(424±192)和(546±183)ng·m-3.富集因子分析显示Sb、Zn、Pb、Cu、Ni、Ba、Ca、Co等元素富集显著,其富集因子均值范围为172~2426.主成分分析显示,区域性输送污染源、船舶源、燃煤和电子工业是PM2.5中重金属的主要来源,其贡献率分别为53.4%、13.0%、7.6%和6.8%.健康风险评价结果表明,Mn元素对儿童存在一定的非致癌风险,Cr、Pb和Co存在一定的致癌风险.  相似文献   

17.
用ICP-MS对厦门市夏冬两季城区和郊区PM_(2.5)(当量直径≤2.5 μm的颗粒物)及其中10种重金属(V、Cr、Mn、Co、Ni、Zn、As、Cd、Pb和Cu)含量进行测定,分析其污染特征,并对重金属的健康风险进行评价。结果表明,采样期间厦门市PM_(2.5)中重金属含量水平表现为ZnPbCuMnVAsNiCrCdCo,其中Zn、Pb、As、Cd和Cu富集因子远远大于10,受人为影响较严重。健康风险评价结果表明,PM_(2.5)中重金属的非致癌健康风险可以忽略;几乎所有重金属的致癌健康风险都高于最大可接受风险值10~(-6)。  相似文献   

18.
采集了珠三角地区2014—2015年冬、夏两季的环境空气PM_(2.5)样品,利用电感耦合等离体质谱仪(ICP-MS)测定了样品中的重金属含量,并采用US EPA环境健康风险评价模型,对其健康风险进行了评估.结果表明:环境空气中重金属元素Pb、Cu、Zn、Cd、As、Ni、Cr的浓度分别为11.1~183.0、48.5~406.0、110~1218、0.2~14.4、3.5~77.0、0.38~18.90、2.89~93.20 ng·m-3,浓度大小顺序为:ZnCuPbAsCrNiCd;除As外,其余重金属浓度均表现为冬季高于夏季.元素As经皮肤黏滞及口腔摄入的非致癌风险值均在安全范围内,但经呼吸途径暴露存在非致癌风险;Cu、Zn、Cd、Cr经3种途径暴露不存在非致癌风险;元素Pb、As、Cd、Cr经皮肤黏滞及口腔摄入的致癌风险均值尚在安全值范围内,但经呼吸暴露存在致癌风险;元素Ni经3种途径暴露不存在致癌风险.对于综合危害指数(HI),除As外,其他金属元素的HI值均低于安全值,各金属元素的HI值大小顺序为:AsCdNiCr.研究表明,在珠三角区域环境空气PM_(2.5)中,元素As、Cr存在一定的健康风险.  相似文献   

19.
为揭示碳酸盐岩地质高背景区土壤重金属生态风险,选择广西典型的成土母岩为碳酸盐岩的土壤重金属高背景区,采集水稻籽实及对应根系土样品68套,在分析测试土壤、农作物籽实样品中砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)和锌(Zn)这8种重金属含量及土壤中重金属赋存形态的基础上,采用统计学、地累积指数、生物富集系数及相关性分析等方法开展土壤重金属生态风险研究.结果表明,研究区土壤中8种重金属平均含量明显高于全国和广西表层土壤的平均水平,其中Cd、As和Cr超过农用地土壤污染筛选值的比例分别达95. 6%、86. 8%和69. 1%,超过土壤污染管控值的比例分别为27. 9%、17. 6%和5. 9%.区内土壤中As、Cr、Cu、Ni、Pb和Zn主要以残渣态为主(残渣态占比 80%),显示出较低的生物活性; Cd的生物活性相对较高,生物有效态组分占20. 99%,但仍明显低于全国其它非碳酸盐岩地区的土壤; Hg的潜在生物有效态组分占44. 04%,然而土壤中Hg全量较低,因此其潜在生物有效态的绝对含量较低.与土壤相比,研究区水稻籽实中重金属超标率明显较低,仅部分样品中Cd、Cr、Pb超过国家食品限量标准,超标率分别为8. 8%、2. 9%和23. 5%.相关性分析显示,研究区土壤重金属全量与对应的水稻籽实中重金属含量不存在显著正相关关系.水稻籽实重金属生物富集能力普遍较低,8种重金属生物富集系数(BCF)的均值均小于0. 1,其中As、Cr、Hg、Ni和Pb的BCF均值小于0. 05.上述结果表明,对于碳酸盐岩等地质高背景区,相关部门在制定污染土壤管控政策时不能仅以土壤重金属全量作为衡量标准,应综合考虑金属赋存形态、生物活性及农作物超标率等因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号