首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
Tree species and temperature change arising from seasonal variation or global warming are two important factors influencing N2O and NO emissions from forest soils. However, few studies have examined the effects of temperatures(5–35℃) on the emissions of forest soil N2O and NO in typical subtropical region. A short-term laboratory experiment was carried out to investigate the influence of temperature changes(5–35℃) on soil N2O and NO emissions under aerobic conditions in two contrasting(broad-leaved and coniferous) subtropical acidic forest types in China. The results showed that the temporal pattern of N2O and NO emissions between the three lower temperatures(5℃, 15℃, and 25℃) and 35℃ was significantly different for both broad-leaved and coniferous forest soils. The effects of temperature on soil N2O and NO emission rates varied between broad-leaved and coniferous forest soils. Both N2O and NO emissions increased exponentially with an increase in temperature in the broad-leaved forest soil. However, N2O and NO emissions in the coniferous forest soil were not sensitive to temperature change between 5℃ and 25℃. N2O and NO emission rates were significantly higher in the broad-leaved forest soil as compared with the coniferous forest soil at all incubation temperatures except 5℃. These results suggest that the broad-leaved forest could contribute more N2O and NO emissions than the coniferous forest for most of the year in the subtropical region of China.  相似文献   

2.
Nitrous oxide emissions in nonflooding period from fallow paddy fields   总被引:1,自引:0,他引:1  
The study was conducted to investigate the N2O emissions and dissolved N2O in the leachate during the nonflooding period in nongrowing paddy fields.Three kinds of paddy soils were repacked to soil columns and were supersaturated with water initially and dried gradually in a greenhouse to attain the N2O emissions flux during the incubation.Soils with the texture of silty clay-loam (Q and H) produced cracks during the drying of soil,but soil with the texture of silty loam (X) did not form the cracks.Cracked s...  相似文献   

3.
A facility of BaPS (Barometric Process Separation) was used to determine soil respiration, gross nitrification and denitrification in a winter wheat field with depths of 0-7, 7--14 and 14-21 cm. N2O production was determined by a gas chromatograph. Crop root mass and relevant soil parameters were measured. Results showed that soil respiration and gross nitrification decreased with the increase of soil depth, while denitrification did not change significantly. In comparison with no-plowing plot, soil respiration increased significantly in plowing plot, especially in the surface soil of 0-7 cm, while gross nitrification and denitrification rates were not affected by plowing. Cropping practice in previous season was found to affect soil gross nitrification in the following wheat-growing season. Higher gross nitrification rate occurred in the filed plot with preceding crop of rice compared with that of maize for all the three depths of 0-7, 7-14 and 14-21 cm. A further investigation indicated that the nitrification for all the cases accounted for about 76% of the total nitrogen transformation processes of nitrification and denitrification and the N2O production correlated with nitrification significantly, suggesting that nitrification is a key process of soil N2O production in the wheat field. In addition, the variations of soil respiration and gross nitrification were exponentially dependent on root mass (p〈0.00l).  相似文献   

4.
To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM), half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25℃ and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35℃ and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil.  相似文献   

5.
Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.  相似文献   

6.
The effects of chlorothalonil and carbendazim on nitrification and denitrification in six soils in upland and rice paddy environments were investigated. Laboratory aerobic (60% water holding capacity) and anaerobic (flooded) conditions were studied at 25°C and fungicide addition rates of 5.5 mg/kg A. I. (field rate, FR), 20 times (20FR) and 40 times (40FR) field rate, respectively. The results indicated that chlorothalonil at the field rate had a slight inhibitory effect on one soil only, and that soil did ...  相似文献   

7.
Municipal solid waste landfills emit nitrous oxide(N_2O)gas.Assuming that the soil cover is the primary N_2O source from landfills, this study tested,during a four-year project,the hypothesis that the proper use of chosen soils with fine texture minimizes N_2O emissions.A full-scale sanitary landfill,a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb,at the Hangzhou Tianziling landfill in Hangzhou City were the test sites.The N_2O emission rates from all test sites were considerably lower than those reported in the published reports.Specifically,the N_2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil.The effects of leachate recirculation and irrigation were minimal.Properly chosen cover soils applied to the landfills reduced N_2O flux.  相似文献   

8.
The aim of this study is to investigate conversion of nitrogen and COD in enriched paddy soil by nitrification coupled with anammox process in a dual chamber bioelectrochemical system. The paddy soil was enriched for denitrification coupled with anammox by microbial consortia and was acclimatized in the cathodic chamber of microbial fuel cells(MFCs). The bioelectrochemical systems were treated with different ammonium concentrations in the cathodic chamber: the MFC with low concentration ammonium...  相似文献   

9.
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.  相似文献   

10.
Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on the mineralization of organic carbon (SOC) of paddy soils of China under warming. SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively. The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days. Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively; and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg, varying with different soils. The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates, representing the three subpools of the total mineralizable C: very actively mineralized C at 1-23 d, actively tnineralized C at 24--74 d and a slowly mineralized pool with low and more or less stabilized C mineralization rate at 75-114 d. The calculated Q10 values ranged from 1.0 to 2.4, varying with the soil types and N status. Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied, despite a well correlation of labile C with the shortly and actively mineralized C, which were shown in sensitive response to soil warming. However, the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence. Therefore, C sequestration may not result in an increase of C mineralization proportionally. The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied.  相似文献   

11.
Nitrous oxide emissions from black soils with different pH   总被引:1,自引:0,他引:1  
N2O fluxes as a function of incubation time from soil with different available N contents and pH were determined. Cumulative carbon dioxide (CO2) emissions were measured to indicate soil respiration. A 144-hr incubation experiment was conducted in a slightly acidic agricultural soil (pHH2O 5.33) after the pH was adjusted to four different values (3.65, 5.00, 6.90 and 8.55). The experiments consisted of a control without added N, and with NH4+-N and NO3--N fertilization. The results showed that soil pH contributed significantly to N2O flux from the soils. There were higher N2O emissions in the period 0-12 hr in the four pH treatments, especially those enhanced with N-fertilization. The cumulative N2O-N emission reached a maximum at pH 8.55 and was stimulated by NO3--N fertilization (70.4 μg/kg). The minimum emissions appeared at pH 3.65 and were not stimulated by NO3--N or NH4+-N fertilization. Soil respiration increased significantly due to N-fertilization. Soil respiration increased positively with soil pH (R2 = 0.98, P < 0.01). The lowest CO2-C emission (30.2 mg/kg) was presented in pH 3.65 soils without N-fertilization. The highest CO2-C emissions appeared in the pH 8.55 soils for NH4+-N fertilization (199 mg/kg). These findings suggested that N2O emissions and soil respiration were significantly influenced by low pH, which strongly inhibits soil microbial nitrification and denitrification activities. The content of NO3--N in soil significantly and positively affected the N2O emissions through denitrification.  相似文献   

12.
理解底物碳氮对厌氧条件下水稻土排放氮素气体——氮气(N2)、氧化亚氮(N2O)和一氧化氮(NO)以及二氧化碳(CO2)和甲烷(CH4)的影响,有助于制定合理的温室气体减排措施,定量了解反硝化产物组成对碳底物水平的依赖性,也有助于氮转化过程模型研发中制定正确的关键过程参数选取方法或参数化方案.本研究采用粉砂壤质水稻土为研究对象,设置对照(CK)和加碳(C+)两个处理,前者的初始硝态氮和可溶性有机碳(DOC)含量分别为~50 mg·kg-1和~28 mg·kg-1,后者的分别为~50 mg·kg-1和~300 mg·kg-1.采用氦环境培养-气体及碳氮底物直接同步测定系统,研究了完全厌氧条件下碳底物水平对上述气体排放的影响.结果表明,CK处理无CH4排放,而C+处理可观测到CH4排放;C+处理的综合增温潜势显著高于CK处理(P<0.01);NO、N2O和N2排放量占这3种氮素气体排放总量的比重,在CK处理分别约为9%、35%和56%,在C+处理分别约为31%、50%和19%,处理间差异显著(P<0.01).由此表明,碳底物水平可显著改变所排放氮素气体的组成;对于旱地阶段硝态氮比较丰富的水稻土,避免在淹水前或淹水期间施用有机肥,有利于削减温室气体排放.  相似文献   

13.
厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征   总被引:1,自引:0,他引:1  
了解厌氧条件土壤反硝化气体(N2、N2O和NO)、CO2和CH4排放特征,是认识反硝化过程机制的基础,并有助于制定合理的温室气体减排措施.定量反硝化产物组成,可为氮转化过程模型研发制定正确的关键过程参数选取方法或参数化方案.本研究选取质地相同(砂壤土)的两个水稻土为研究对象,通过添加KNO3和葡萄糖的混合溶液,将培养土壤的初始NO-3和DOC含量分别调节到50 mg·kg-1和300 mg·kg-1,采用氦环境培养-气体及碳氮底物直接同步测定方法,研究完全厌氧条件下土壤N2、N2O、NO、CO2和CH4的排放特征,并获得反硝化气态产物中各组分的比率.结果表明,在整个培养过程中,两个供试土壤的N2、N2O和NO累积排放量分别为6~8、20和15~18 mg·kg-1,这些气体排放量测定结果可回收土壤NO-3变化量的95%~98%,反硝化气态产物以N2O和NO为主,其中3种组分的比率分别为15%~19%(N2)、47%~49%(N2O)和34%~36%(NO);但反硝化气体产物组成的逐日动态均显现为从以NO为主逐渐过渡到以N2O为主,最后才发展到以N2为主.以上结果说明,反硝化气体产物组成是随反硝化进程而变化的,在以气体产物组成比率作为关键参数计算各种反硝化气体产生率或排放率的模型中,很有必要重视这一点.  相似文献   

14.
农田排水沟通过底泥硝化-反硝过程可消纳部分农业面源氮.水稻、蔬菜和水果是太湖地区种植业的主要土地利用类型,各种植区排水河沟密布,且不同种植区沟道接受外源氮差异明显,直接影响沟道消纳氮能力.分别采集太湖地区果园、稻田和菜地种植区排水沟道沉积物,设计上覆水N0、N1、N2、N3和N4这5个外源NO-3-N输入梯度,净氮输入量分别为0、0.5、1.0、5.0和10 mg·L~(-1),开展室内培养试验,研究外源氮输入对不同土地利用区排水沟道底泥反硝化和N2O排放的影响.结果表明,外源氮输入激发了排水沟底泥反硝化作用,3条沟道底泥反硝化速率均随上覆水NO-3-N输入浓度增大显著增大(P0.05),底泥累积反硝化量与输入NO-3-N浓度呈显著线性正相关关系(R20.75);除菜地外,沟道底泥N2O排放速率和累积排放量随外源NO-3-N输入浓度增大均无显著增大趋势(P0.05).在无外源氮或低外源氮输入时(N0和N1),果园、菜地和稻田种植区3种沟道之间底泥反硝化和N2O排放累积损失氮量的差异不显著(P0.05).随NO-3-N输入浓度增大,特别是高外源氮输入(N3和N4)条件下,果园和稻田排水沟道底泥反硝化消纳氮量显著高于菜地沟道底泥反硝化损失氮量(P0.05),而菜地排水沟底泥N2O排放损失氮量显著高于其它2条沟道底泥的N2O排放损失氮量(P0.05).排水沟底泥有机碳矿化速率与反硝化损失速率成正相关关系(n=15),微生物矿化(CO2-C)作用促进了沟道底泥硝化反硝过程.  相似文献   

15.
稻田土壤长期的淹水厌氧环境有利于反硝化作用的进行,是导致N2O大量排放的重要原因之一.目前,关于稻田土壤N2O排放特征的相关研究已有不少,然而关于稻田土壤N2O的消纳能力及相关功能微生物的应答机制尚不明确.本研究以淹水水稻土原状土柱(0~5 cm)为研究对象,在土柱底部输入外源N2O气体,系统监测所添加外源N2O通过土柱的浓度及关键土壤因子的动态变化特征,以及分析nosZ-I型功能种群组成的演替规律,以期揭示淹水水稻土N2O的消纳能力及nosZ-I型功能种群的应答机制.结果表明,外源N2O输入后约97.39%扩散进入土柱,逸散出土表的N2O占0.72%~7.75%,达到排放高峰后被土壤继续消耗,培养192 h后外源N2O处理比对照多消耗67.10% N2O,N2O消耗速率提高144.2%.同时,NH4+-N、NO3--N和DOC分别多消耗了19.65%、16.29%和8.41%.N2O输入192 h后nosZ-I的群落多样性没有显著差异,但是其种群组成发生显著改变:优势菌株OTU5004、OTU5065、OTU960和OTU1282(Proteobacteria)相对丰度显著提高,其中OTU5004菌株相对丰度比初始样和CK升高7.30%和4.63%,非优势菌株OTU5265(Azoarcus sp.)比初始样和CK升高0.33%和0.15%.上述结果表明,0~5 cm深度渍水水稻土壤具有很强的N2O消耗能力,外源N2O添加使N2O消耗速率明显加快,提高了淹水水稻土壤对N2O的消纳潜力,促进碳氮转化和nosZ-I群落组成变化,这将为降低大气N2O排放提供新的参考.  相似文献   

16.
选取内蒙古河套灌区轻度盐渍土S_1(EC为0.46 dS·m~(-1))及中度盐渍土S_2(EC为1.07 dS·m~(-1))为研究对象,在等施氮量条件下,采用静态箱-气相色谱法研究了不同有机无机肥配施比例:CK(不施肥)、U_1(240 kg·hm~(-2)化肥)、U_3O_1(180 kg·hm~(-2)化肥+60 kg·hm~(-2)有机肥)、U_1O_1(120 kg·hm~(-2)化肥+120 kg·hm~(-2)有机肥)、U_1O_3(60 kg·hm~(-2)化肥+180 kg·hm~(-2)有机肥)和O_1(240 kg·hm~(-2)有机肥)对春玉米农田土壤N_2O排放的影响,旨在明确不同施肥策略下土壤N_2O排放特征,为制定盐渍化农田合理的减排措施提供理论依据.结果表明, 2种不同程度盐渍化土壤N_2O排放存在显著差异,同一处理S_2土壤N_2O排放总量较S_1土壤高出11.86%~47.23%(P0.05).各施肥处理对土壤N_2O排放通量影响趋势基本一致,即施肥后出现排放高峰,基肥和追肥后累积排放量占整个生育期排放量60%左右.适当施入有机肥可以显著降低土壤N_2O排放,S_1和S_2盐渍土分别以U_1O_1及O_1处理N_2O排放量最小,较U_1处理显著降低33.62%和28.51%(P0.05),同时可以获得较高的玉米产量.各施肥处理N_2O排放通量与土壤NH~+_4-N呈极显著正相关关系(P0.01),而与土壤NO~-_3-N含量呈负相关关系,表明硝化作用是盐渍化玉米农田N_2O产生的主要途径,配施有机肥可以持续减少土壤NH~+_4-N供给而减少N_2O的排放.从玉米产量及减少温室效应的角度,得到本地区适宜的施肥管理模式:轻度盐渍土为120 kg·hm~(-2)有机肥+120 kg·hm~(-2)化肥,中度盐渍土为240 kg·hm~(-2)有机肥.  相似文献   

17.
盐度水平对不同盐渍化程度土壤氧化亚氮排放的影响   总被引:2,自引:0,他引:2  
杨文柱  孙星  焦燕 《环境科学学报》2016,36(10):3826-3832
选取内蒙古河套灌区3种不同盐渍化程度土壤(盐土、重度盐渍化土壤和轻度盐渍化土壤),采用室内培养方法,用不同浓度KCl溶液调节不同盐渍化程度土壤盐含量分别为原土壤盐含量(对照)的2倍和3倍,研究盐分对不同盐渍化程度土壤氧化亚氮(N_2O)排放的影响.结果表明,盐分含量显著影响不同盐渍化程度土壤N_2O排放.无外源盐分加入时,不同盐碱程度土壤中盐土N_2O排放量最高,重度盐渍化土壤次之,轻度盐渍化土壤最低.外源盐加入后,随盐度梯度升高,与其对照相比,盐土N_2O排放量降低;重度盐渍化土壤N_2O排放量呈现先增加后降低趋势;轻度盐渍化土壤N_2O排放量升高.与其对照相比,土壤的盐分含量增加2倍时,盐土N_2O排放量减少90%;轻度盐渍化土壤N_2O排放量增加9倍.外源盐加入不同盐渍化程度土壤对N_2O排放的影响程度取决于土壤培养前后铵态氮含量差值,加入外源盐后,N_2O累积排放变化量的94.6%由土壤NH_4~+-N含量差值解释(R2=0.95,p0.01).  相似文献   

18.
生物质炭对双季稻田土壤反硝化功能微生物的影响   总被引:10,自引:6,他引:4  
目前,基于田间条件下生物质炭添加对稻田反硝化微生物的调控效应还不甚明确.为此,本研究采用小区试验,通过在双季稻田添加不同量的小麦秸秆生物质炭(0、24和48 t·hm-2,分别用CK、LC和HC代表),结合实时荧光定量PCR(q PCR)和末端限制性片段长度多态性(T-RFLP)分析技术,研究了生物质炭添加对双季稻田休闲季和水稻季土壤反硝化微生物相关功能基因(调控硝酸还原酶的nar G基因,亚硝酸还原酶的nir K基因和氧化亚氮还原酶的nos Z基因)的影响.由于生物质炭呈碱性,添加到土壤后,可提高稻田休闲季土壤p H 0. 2~0. 8个单位.生物质炭本身含有部分可溶性N,因此,添加生物质炭可增加休闲季土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,增幅分别达21. 1%~32. 5%和63. 0%~176. 0%,但由于其吸附作用,降低了水稻季NH_4~+-N含量48. 8%~60. 1%.生物质炭添加增加了休闲季微生物生物量氮(MBN)含量,这可能是由于生物质炭较大的比表面积为微生物生存提供了适宜的环境,可利用养分的增加促进了微生物的生长.与对照相比,休闲季生物质炭引起的NH_4~+-N和NO_3~--N含量增加,促进NH_4~+-N向NO_3~--N的转化,进而增加nar G和nos Z的基因丰度(P0. 05),同时,生物质炭处理p H的提高促进了nos Z的基因丰度的增加,显著改变了反硝化功能基因nar G和nos Z的群落结构,并以此对反硝化作用产生影响,但未对休闲季氧化亚氮(N_2O)排放产生影响.而在水稻季,生物质炭增加了土壤nos Z的基因丰度(P 0. 05),HC处理增加了nir K基因丰度(P 0. 05),这也是导致水稻季HC处理N_2O排放增加的重要原因.生物质炭通过降低水稻季土壤NH_4~+-N含量,改变了nir K和nos Z基因的群落结构,而nar G基因群落结构的变化影响了土壤N_2O排放.综上所述,生物质炭可通过改变双季稻田土壤性质,来影响参与土壤反硝化作用的相关微生物,进而影响土壤N_2O排放及NO_3~--N的淋失.  相似文献   

19.
黄河上游灌区连作稻田N2O排放特征及影响因素   总被引:1,自引:1,他引:0  
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p<0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号