首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitous arsenic in groundwater poses a great risk to human health due to its environmental toxicity and carcinogenicity. In the present work, a new adsorbent, δ-MnO2 modified activated carbon, was prepared, and its performance for the uptake of arsenate and arsenite species from aqueous solutions was investigated by batch experiments. Various techniques, including FESEM-EDX, p-XRD, XPS and BET surface area analysis, were employed to characterize the properties of the adsorbent and the arsenic adsorption mechanisms. The results showed that δ-MnO2 covered on the surface and padded in the pores of the activated carbon. Adsorption kinetic studies revealed that approximately 90.1% and 76.8% of As(III) and As(V), respectively, were removed by the adsorbent in the first 9 hr, and adsorption achieved equilibrium within 48 hr. The maximum adsorption capacities of As(V) and As(III) at pH 4.0 calculated from Langmuir adsorption isotherms were 13.30 and 12.56 mg/g, respectively. The effect of pH on As(V) and As(III) removal was similar, and the removal efficiency significantly reduced with the increase of solution pH. Arsenite oxidation and adsorption kinetics showed that the As(V) concentration in solution due to As(III) oxidation and reductive dissolution of MnO2 increased rapidly during the first 12 min, and then gradually decreased. Based on the XPS analysis, nearly 93.3% of As(III) had been oxidized to As(V) on the adsorbent surface and around 38.9% of Mn(IV) had been reduced to Mn(II) after As(III) adsorption. This approach provides a possible method for the purification of arsenic-contaminated groundwater.  相似文献   

2.
To obtain a cost-effective adsorbent for the removal of arsenic in water,a novel nanostructured Fe–Co based metal organic framework(MOF-74)adsorbent was successfully prepared via a simple solvothermal method.The adsorption experiments showed that the optimal molar ratio of Fe/Co in the adsorbent was 2:1.The Fe_2Co_1MOF-74 was characterized by various techniques and the results showed that the nanoparticle diameter ranged from60 to 80 nm and the specific surface area was 147.82 m~2/g.The isotherm and kinetic parameters of arsenic removal on Fe_2Co_1MOF-74 were well-fitted by the Langmuir and pseudo-second-order models.The maximum adsorption capacities toward As(III)and As(V)were 266.52 and 292.29 mg/g,respectively.The presence of sulfate,carbonate and humic acid had no obvious effect on arsenic adsorption.However,coexisting phosphate significantly hindered the removal of arsenic,especially at high concentrations(10 mmol/L).Electrostatic interaction and hydroxyl and metal–oxygen groups played important roles in the adsorption of arsenic.Furthermore,the prepared adsorbent had stable adsorption ability after regeneration and when used in a real-water matrix.The excellent adsorption performance of Fe_2Co_1MOF-74 material makes it a potentially promising adsorbent for the removal of arsenic.  相似文献   

3.
Arsenic(As) mobilization in soils is a fundamental step controlling its transport and fate,especially in the presence of the co-existing components. In this study, the effect of two commonly used herbicides, glyphosate(PMG) and dicamba, and two competing ions including phosphate and humic acid, on As desorption and release was investigated using batch and column experiments. The batch kinetics results showed that As desorption in the presence of competing factors conformed to the pseudo-second order kinetics at pH range of 5–9. The impact of phosphate on desorption was greatest, followed by PMG. The competitive effect of dicamba and humic acid was at the same level with electrolyte solution. In situ flow cell ATR-FTIR analysis was performed to explore the mechanism of phosphate and PMG impact on As mobilization. The results showed that PMG promoted As(Ⅲ) desorption by competiting for available adsorption sites with no change in As(Ⅲ)complexing structure. On the other hand, phophate changed As(Ⅲ) surface complexes from bidentate to monodentate structures, exhibiting the most siginficant effect on As(Ⅲ)desorption. As(Ⅴ) surface complexes remained unchanged in the presence of PMG and phosphate, implying that the competitive effect for As(Ⅴ) desorption was primarily determined by the available adsorption sites. Long-term(10 days) soil column experiments suggested that the effect of humic acid on As mobilization became pronounced from 3 days(18 PVs). The insights of this study help us understand the transport and fate of As due to herbicides application.  相似文献   

4.
The removal of As(V) from synthetic water was studied using four different nanofiltration (NF) membranes (ESNA-1-K1, NF270, ESNA-1-LF, and HODRA-CORE). The influences of ion concentration, transmembrane pressure (TMP), and the presence of natural organic matter (humic acid, HA) on the arsenic removal efficiency and permeate flux were investigated. The arsenic rejection of ESNA- 1-LF was higher than those of the other membranes in all experiments (> 94%), and the HODRA-CORE membrane gave the lowest removal of arsenic (< 47%). An increase in the ion concentration in the feed solution and addition of HA decreased the arsenic rejection of the HODRA-CORE membrane. However, both increasing of the ion concentration and addition of HA made the rejection increased for the other membranes (ESNA-1-K1, NF270, and ESNA-1-LF). With increasing TMP, for all four NF membranes, increases in both arsenic rejection and permeate flux were observed. The permeate fluxes of the four NF membranes decreased to some extent after addition of HA to the solutions for operating time of 6 hr.  相似文献   

5.
The adsorption and desorption behavior of Cr(Ⅵ) in membrane capacitive deionization(MCDI) was investigated systematically in the presence of bovine serum albumin(BSA) and KCl with different concentrations, respectively. Results revealed that Cr(Ⅵ) absorption was enhanced and the adsorption amount for Cr(Ⅵ) increased from 155.7 to 190.8 mg/g when KCl concentration increased from 100 to 200 mg/L in the adsorption process, which was attributed to the stronger driving force. However, the adsorption amount sharply decreased to 90.2 mg/g when KCl concentration reached up to 1000 mg/L suggesting the negative effect for Cr(Ⅵ) removal that high KCl concentration had. As for the effect of BSA on ion adsorption, the amount for Cr(Ⅵ) significantly declined to 78.3 mg/g and p H was found to be an important factor contributing to this significant reduction. Then, the desorption performance was also conducted and it was obtained that the presence of KCl had negligible effect on Cr(Ⅵ) desorption, while promoted by the addition of BSA. The incomplete desorption was obtained and the residual chromium ions onto the electrode after desorption was detected via energy-dispersive X-ray spectroscopy(EDS). Based on above analysis, the enhanced removal mechanism for Cr(Ⅵ) in MCDI was found to be consisted of ion adsorption onto electrode surface, the redox reaction of Cr(Ⅵ) into Cr(III)and precipitation, which was demonstrated by X-ray photoelectron spectroscopy(XPS) and scanning electron microscope(SEM).  相似文献   

6.
Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char (PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr( Ⅵ ) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution/concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon(CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(Ⅵ ) ion are weaker than that of CAC,which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr( Ⅵ ) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr( Ⅵ ) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr( Ⅵ ) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr( Ⅵ ) removal. The adsorption of Cr( Ⅵ )was identified as pseudo-second-order kinetics. The rate constants of adsorption were evaluated.  相似文献   

7.
Five biochars derived from lotus seedpod(LSP) were applied to examine and compare the adsorption capacity of 17β-estradiol(E2) from aqueous solution.The effect of KOH activation and the order of activation steps on material properties were discussed.The effect of contact time,initial concentration,p H,ionic strength and humic acid on E2 adsorption were investigated in a batch adsorption process.Experimental results demonstrated that the pseudo second-order model fitted the experimental data best and that adsorption equilibrium was reached within 20 hr.The efficiency of E2 removal increased with increasing E2 concentration and decreased with the increase of ionic strength.E2 adsorption on LSP-derived biochar(BCs) was influenced little by humic acid,and slightly affected by the solution p H when its value ranged from 4.0 to 9.0,but considerably affected at p H 10.0.Low environmental temperature is favorable for E2 adsorption.Chemisorption,π–π interactions,monolayer adsorption and electrostatic interaction are the possible adsorption mechanisms.Comparative studies indicated that KOH activation and the order of activation steps had significant impacts on the material.Post-treated biochar exhibited better adsorption capacity for E2 than direct treated,pretreated,and raw LSP biochar.Pyrolyzed biochar at higher temperature improved E2 removal.The excellent performance of BCs in removing E2 suggested that BCs have potential in E2 treatment and that the biochar directly treated by KOH would be a good choice for the treatment of E2 in aqueous solution,with its advantages of good efficiency and simple technology.  相似文献   

8.
To explore the formation process and mechanism of organic matter and organic-mineral complex under humification and mineralization conditions, a series of samples including humic acid, kaolin, and humic acid-kaolin complex were prepared using a subcritical water treatment method(SWT) under specific temperature, pressure and reaction time conditions. HA was used as a surrogate for natural organic matter because it has a similar abundant pore structure,variety of carbon types, and chemical components. These samples were used in carbamazepine(CBZ) sorption experiments and characterized by a variety of techniques. The polymerization of humic acid under the conditions of increased temperature and pressure resulted in an increase in specific surface area and molecular quantity. In addition, the degree of aromaticity rose from59.52% to 70.90%. These changes were consistent with the transformation from ‘soft carbon' to‘hard carbon' that occurs in nature. The results of sorption experiments confirmed the interaction between humic acid and kaolin from the difference between the predicted and actual Qevalues. The conceptual model of humic acid-kaolin complex could be deduced and described as follows. Firstly, the aromatic components of humic acid preferentially combine with kaolin through the intercalation effect, which protects them from the treatment effects.Next, the free carboxyl groups and small aliphatic components of humic acid interact on the surface of kaolin, and these soft species transform into dense carbon through cyclization and polymerization. As a result, humic acid-kaolin complex with a mineral core and dense outer carbonaceous patches were formed.  相似文献   

9.
A Zr-β-FeOOH adsorbent for both As(V) and As(III) removal was prepared by a chemical co-precipitation method.Compared with β-FeOOH,the addition of Zr enhanced the adsorption capacities for As(V) and As(III),especially As(III).The maximum adsorption capacities for As(III) and As(V) were 120 and 60mg/g respectively at pH 7.0,much higher than for many reported adsorbents.The adsorption data accorded with Freundlich isotherms.At neutral pH,for As(V),adsorption equilibrium was approached after 3 hr,while for As(III),adsorption equilibrium was approached after 5 hr.Kinetic data fitted well to the pseudo second-order reaction model.As(V) elimination was favored at acidic pH,whereas the adsorption of As(III) by Zr-β-FeOOH was found to be effective over a wide pH range of 4-10.Competitive anions hindered the adsorption according to the sequence:phosphate > silicate > bicarbonate > sulfate > nitrate,while Ca2+ and Mg2+ increased the removal of As(III) and As(V) slightly.The high adsorption capability and good performance in other aspects make Zr-β-FeOOH a potentially attractive adsorbent for the removal of both As(III) and As(V) from water.  相似文献   

10.
Hausmannite is a common low valence Mn oxide mineral, with a distorted spinel structure, in surficial sediments. Although natural Mn oxides often contain various impurities of transitional metals (TMs), few studies have addressed the effect and related mechanism of TM doping on the reactivity of hausmannite with metal pollutants. Here, the reactivity of cobalt (Co) doped hausmannite with aqueous As(III) and As(V) was studied. Co doping decreased the point of zero charge of hausmannite and its adsorption capacity for As(V). Despite a reduction of the initial As(III) oxidation rate, Co-doped hausmannite could effectively oxidize As(III) to As(V), followed by the adsorption and fixation of a large amount of As(V) on the mineral surface. Arsenic K-edge EXAFS analysis of the samples after As(V) adsorption and As(III) oxidation revealed that only As(V) was adsorbed on the mineral surface, with an average As-Mn distance of 3.25–3.30 Å, indicating the formation of bidentate binuclear complexes. These results provide new insights into the interaction mechanism between TMs and low valence Mn oxides and their effect on the geochemical behaviors of metal pollutants.  相似文献   

11.
The study was to investigate the adsorption behavior of arsenite (As(Ⅲ)) and arsenate (As(Ⅴ)) on two variable charge soils, i.e., Haplic Acrisol and Rhodic Ferralsol at different ionic strengths and pH with batch methods. Results indicated that the amount of As(Ⅲ) adsorbed by these two soils increased with increasing solution pH, whereas it decreased with increasing ionic strength under the acidic condition. This suggested that As(Ⅲ) was mainly adsorbed on soil positive charge sites through electrostatic attraction under the acidic condition. Moreover, intersects of As(Ⅴ) adsorption-pH curves at different ionic strengths (a characteristic pH) are obtained for both soils. It was noted that above this pH, the adsorption of As(Ⅴ) was increased with increasing ionic strength, whereas below it the reverse trend was true. Precisely the intersect pH was 3.6 for Haplic Acrisol and 4.5 for Rhodic Ferralsol, which was near the values of PZSE (soil point of zero salt effect) of these soils. The effects of ionic strength and pH on arsenate adsorption by these soils were interpreted by the adsorption model. The results of zeta potential suggested that the potential in adsorption plane becomes less negative with increasing ionic strength above soil PZSE and decreases with increasing ionic strength below soil PZSE. These results further supported the hypothesis of the adsorption model that the potential in the adsorption plane changes with ionic strength with an opposite trend to surface charge of the soils. Therefore, the change of the potential in the adsorption plane was mainly responsible for the change of arsenate adsorption induced by ionic strength on variable charge soils.  相似文献   

12.
The adsorption and desorption behavior of Cr(VI) in membrane capacitive deionization (MCDI) was investigated systematically in the presence of bovine serum albumin (BSA) and KCl with different concentrations, respectively. Results revealed that Cr(VI) absorption was enhanced and the adsorption amount for Cr(VI) increased from 155.7 to 190.8?mg/g when KCl concentration increased from 100 to 200?mg/L in the adsorption process, which was attributed to the stronger driving force. However, the adsorption amount sharply decreased to 90.2?mg/g when KCl concentration reached up to 1000?mg/L suggesting the negative effect for Cr(VI) removal that high KCl concentration had. As for the effect of BSA on ion adsorption, the amount for Cr (VI) significantly declined to 78.3?mg/g and pH was found to be an important factor contributing to this significant reduction. Then, the desorption performance was also conducted and it was obtained that the presence of KCl had negligible effect on Cr(VI) desorption, while promoted by the addition of BSA. The incomplete desorption was obtained and the residual chromium ions onto the electrode after desorption was detected via energy-dispersive X-ray spectroscopy (EDS). Based on above analysis, the enhanced removal mechanism for Cr(VI) in MCDI was found to be consisted of ion adsorption onto electrode surface, the redox reaction of Cr(VI) into Cr(III) and precipitation, which was demonstrated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).  相似文献   

13.
In order to study the influences of functionalized groups onto the adsorption of tetracycline,we prepared a series of amino and amino–Fe~(3+)complex mesoporous silica adsorbents with diverse content of amino and Fe~(3+)groups(named N,N-SBA15 and Fe-N,N-SBA15).The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction(XRD),Fourier transform infrared spectrometer(FTIR)and N_2adsorption/desorption isotherms.Furthermore,the effects of functionalized groups on the removal of TC were investigated.The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe~(3+)groups.The functionalized amino groups decreased the adsorption capacity while the coordinated Fe~(3+)increased the adsorption capacity.The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly.The adsorption isotherms fitted the Langmuir model well and with the Fe~(3+)content increased from 3.93%to 8.26%,the Q_(max)of the adsorbents increased from 102 to 188 mmol/kg.The solution p H affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly.The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes,while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes.This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   

14.
Soil and sediment play a crucial role in the fate and transport of perfluorooctane sulfonate (PFOS) in the environment. However, the molecular mechanisms of major soil/sediment components on PFOS adsorption remain unclear. This study experimentally isolated three major components in soil/sediment: humin/kerogen, humic/fulvic acid (HA/FA), and inorganic component after removing organics, and explored their contributions to PFOS adsorption using batch adsorption experiments and molecular dynamic simulations. The results suggest that the humin/kerogen component dominated the PFOS adsorption due to its aliphatic featureswhere hydrophobic effect and phase transfer are the primary adsorptionmechanism. Compared with the humin/kerogen, the HA/FA component contributed less to the PFOS adsorption because of its hydrophilic and polar characteristics. The electrostatic repulsion between the polar groups of HA/FA and PFOS anions was attributable to the reduced PFOS adsorption.When the soil organicmatterwas extracted, the inorganic component also plays a non-negligible role because PFOS molecules might form surface complexes on SiO2 surface. The findings obtained in this study illustrate the contribution of organic matters in soils and sediments to PFOS adsorption and provided newperspective to understanding the adsorption process of PFOS on micro-interface in the environment.  相似文献   

15.
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe_2O_3 and AL_2O_3.The test results indicate that chloride,nitrate and sulfate did not have detectable effects,and that selenium(Ⅳ)(Se(Ⅳ))and vanadium(Ⅴ)(V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ)with Fe_2O_3.The results also showed that adsorption of As(Ⅴ)on AL_2O_3 was not affected by chloride and nitrate anions,but slightly by Se(Ⅳ)and V(Ⅴ)ions.Unlike the adsorption of As(Ⅴ)with Fe_2O_3,that with Fe_2O_3 was affected by the presence of sulfate in water solutions.Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ)adsorption with Fe_2O_3 and Al_2O_3.Compared to the other tested anions,phosphate anion was found to be the most prominent solute affecting the As(Ⅴ)adsorption with Fe_2O_3 and Al_2O_3.In general,Fe_2O_3 has a better performance than Al_2O_3 in removal of As(Ⅴ)within a water environment where multi competing solutes are present.  相似文献   

16.
In order to enhance the removal efficiency of As(III), a pre-oxidation process is generally applied first to convert As(III) to As(V), which may cause unwanted new contaminants. To overcome this problem, efforts were made to develop an effective way to remove As(III)directly without an oxidation step. The effect of polyacrylamide polymers(PAMs) such as anionic PAM, cationic PAM and nonionic PAM, on As(III) ion adsorption by spent grain(SG)was investigated. The physico-chemical properties of the three PAM-polymerized SGs(APSG(anionic PAM-polymerized modified spent grain), CPSG(cationic PAM-polymerized spent grain) and NPSG(nonionic PAM-polymerized spent grain)) were analyzed using Fourier transform infrared(FT-IR), scanning electron microscope(SEM) and zeta potential.Batch experimental data showed that the sequence of preferential adsorption for As(III) was APSG CPSG NPSG. Active functional groups such as amino group(NH2), carbonyl group(C_O), C–N bond of the amide group(CONH2), and hydroxyl group(O–H) were responsible for As(III) adsorption. Many tubular structures occurring on the surface of APSG possibly increase the specific surface areas and favor the adsorption of As(III) ions. A fixed-bed study was carried out by using APSG as an adsorbent for As(III) from water. Three factors such as bed height, initial concentration and flow rate were studied, and breakthrough curves of As(III) were obtained. The Adams–Bohart model was used to analyze the experimental data and the model parameters were evaluated.  相似文献   

17.
We fabricated and characterized two hybrid adsorbents originated from hydrated ferric oxides(HFOs) using a polymeric anion exchanger D201 and calcite as host. The resultant adsorbents(denoted as HFO-201 and IOCCS) were employed for Sb(V) removal from water. Increasing solution pH from 3 to 9 apparently weakened Sb(V) removal by both composites, while increasing temperature from 293 to 313 K only improved Sb(V) uptake by IOCCS. HFO-201 exhibited much higher capacity for Sb(V) than for IOCCS in the absence of other anions in solution. Increasing ionic strength from 0.01 to 0.1 mol/L NaNO3would result in a significant drop of the capacity of HFO-201 in the studied pH ranges; however, negligible effect was observed for IOCCS under similar conditions. Similarly, the competing chloride and sulfate pose more negative effect on Sb(V) adsorption by HFO-201 than by IOCCS, and the presence of silicate greatly decreased their adsorption simultaneously, while calcium ions were found to promote the adsorption of both adsorbents. XPS analysis further demonstrated that preferable Sb(V) adsorption by both hybrids was attributed to the inner sphere complexation of Sb(V) and HFO, and Ca(II) induced adsorption enhancement possibly resulted from the formation of HFO-Ca-Sb complexes. Column adsorption runs proved that Sb(V) in the synthetic water could be effectively removed from 30 μg/L to below 5 μg/L(the drinking water standard regulated by China), and the effective treatable volume of IOCCS was around 6 times as that of HFO-201, implying that HFO coatings onto calcite might be a more effective approach than immobilization inside D201.  相似文献   

18.
Bamboo charcoal(BC) was used as starting material to prepare iron-modified bamboo charcoal(Fe-MBC) by its impregnation in FeCl 3 and HNO 3 solutions simultaneously,followed by microwave heating.The material can be used as an adsorbent for Pb(Ⅱ) contaminants removal in water.The composites were prepared with Fe molar concentration of 0.5,1.0 and 2.0 mol/L and characterized by means of N 2 adsorption-desorption isotherms,X-ray diffraction spectroscopy(XRD),scanning electron microscopy coupled with energy dispersive X-ray spectrometry(SEM-EDS),Fourier transform infrared(FT-IR) and point of zero charge(pH pzc) measurements.Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation.The adsorbent with Fe molar concentration of 2 mol/L(2Fe-MBC) exhibited the highest surface area and produced the best pore structure.The Pb(Ⅱ) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(Ⅱ).The adsorption of Pb(Ⅱ) strongly depended on solution pH,with maximum values at pH 5.0.The ionic strength had a significant effect on the adsorption at pH < 6.0.The adsorption isotherms followed the Langmuir isotherm model well,and the maximum adsorption capacity for Pb(Ⅱ) was 200.38 mg/g for 2Fe-MBC.The adsorption processes were well fitted by a pseudo second-order kinetic model.Thermodynamic parameters showed that the adsorption of Pb(Ⅱ) onto Fe-MBC was feasible,spontaneous,and exothermic under the studied conditions,and the ion exchange mechanism played an significant role.These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(Ⅱ) from wastewater.  相似文献   

19.
The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes(SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi–Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between log Kowand log Kdsuggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π–π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84 mg/g, from 19 to 65 mg/g and from 17 to 65 mg/g,respectively. The effect of pH on the adsorption of 2,6-dichlorophenol(2,6-DCP), was also studied. When p H is over the pK aof 2,6-dichlorophenol(2,6-DCP), its removal dropped sharply. When ionic strength increased(Na Cl or KCl concentration from 0 to 0.02 mmol/L),the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.  相似文献   

20.
Fe–Mn binary oxide(FMBO) possesses high efficiency for As(Ⅲ) abatement based on the good adsorption affinity of iron oxide and the oxidizing capacity of Mn(Ⅳ), and the composition and structure of FMBO play important roles in this process.To compare the removal performance and determine the optimum formula for FMBO, magnetic graphene oxide(MRGO)–FMBO and MRGO–MnO_2 were synthesized with MRGO as a carrier to improve the dispersity of the adsorbents in aquifers and achieve magnetic recycling.Results indicated that MRGO–FMBO had higher As(Ⅲ) removal than that of MRGO–MnO_2,although the ratios of Fe and Mn were similar, because the binary oxide of Fe and Mn facilitated electron transfer from Mn(Ⅳ) to As(Ⅲ), while the separation of Mn and Fe on MRGO–MnO_2 restricted the process.The optimal stoichiometry x for MRGO–FMBO(Mn_xFe_(3-x)O_4) was 0.46, and an extraordinary adsorption capacity of 24.38 mg/g for As(Ⅲ) was achieved.MRGO–FMBO showed stable dispersive properties in aquifers, and exhibited excellent practicability and reusability, with a saturation magnetization of 7.6 emu/g and high conservation of magnetic properties after 5 cycles of regeneration and reuse.In addition, the presence of coexisting ions would not restrict the practical application of MRGO–FMBO in groundwater remediation.The redox reactions of As(Ⅲ) and Mn(Ⅳ) on MRGO–FMBO were also described.The deprotonated aqueous As(Ⅲ) on the surface of MRGO–FMBO transferred electrons to Mn(Ⅳ), and the formed As(Ⅴ) oxyanions were bound to ferric oxide as inner-sphere complexes by coordinating their "–OH" groups with Mn(Ⅳ)oxides at the surface of MRGO–FMBO.This work could provide new insights into highperformance removal of As(Ⅲ) in aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号