首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为评价调蓄经济植物湿地技术在农田径流污染控制中的运行效果和经济效益,采用现场调研长期跟踪监测调蓄经济植物湿地进、出水水质和水量变化,深入探索其营养盐质量浓度分布特征及其去除效能.结果表明:①调蓄经济植物湿地能够有效截留营养盐,稳定出水水质,2015年7月-2017年4月出水ρ(TN)、ρ(TP)和ρ(CODCr)平均值分别为1.2、0.07和17.0 mg/L,TN、TP和CODCr去除率分别为65.8%、75.5%和41.3%.②不同调蓄量下TN和TP去除率随着进水水量的增大而减小,表现为枯水期>平水期>丰水期;CODCr去除率与调蓄量之间呈负相关,表现为丰水期>平水期>枯水期;在调蓄经济植物湿地中单位面积TN、TP和CODCr去除负荷量表现为丰水期>平水期>枯水期.③调蓄经济植物湿地中莲藕、海菜花和螺蛳产量分别为26.25、22.50和2.46 t/(hm2·a),氮、磷去除总量分别为275和30 kg/(hm2·a).研究显示,调蓄经济植物湿地能够有效截留氮、磷,在不同水文期均有良好的净化效果,不仅具备景观效益,且具有良好的经济价值.   相似文献   

2.
HRT对城市污水厂尾水反硝化深度脱氮的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
污水厂尾水回用作为水源时,其ρ(TN)较高是亟待解决的问题.在调研污水厂尾水水质的基础上,利用MBBR(移动床生物膜反应器)对其进行深度脱氮,并考察HRT(水力停留时间)对不同填料(聚乙烯和陶粒)的MBBR运行效果的影响.结果表明,NO3--N是尾水中氮的主要形态,其质量浓度约占ρ(TN)的80.8%±8.4%.HRT分别为12、8和4 h时,对NO3--N去除率影响不大,均能达到90%以上,但反硝化能力随着HRT的缩短而成倍增加;HRT为4 h时各反应器的反硝化能力最大,聚乙烯和陶粒MBBR中分别为(28.4±14.5)和(27.4±14.3)mg(L·d)(以NO3--N计).随着HRT的减少,CODCr去除率呈降低趋势.三维荧光分析表明,进、出水中均含有类富里酸和类蛋白质等DOM物质.HRT为8 h时MBBR对DOM的去除率最高,聚乙烯填料MBBR对有机污染物的去除效果略优于陶粒填料.综合考虑氮和有机污染物去除效能,聚乙烯和陶粒填料MBBR优化HRT均为8 h.  相似文献   

3.
低污染水由于排放量大、来源范围广,成为地表水体中氮的重要贡献者.为探究人工湿地对低污染水脱氮时的影响因素,构建曝气人工湿地,分析其在不同运行工况下对低污染水中不同形态氮的去除效果.结果表明,低污染水中TN和N03--N去除率与水力停留时间(HRT)、碳氮比(C/N)和温度显著正相关(r>0.65,P<0.01),与溶解氧(DO)极显著负相关(r<-0.85,P<0.01);NH4+-N去除率与各因素之间相关性不显著(P>0.05).曝气量和HRT的改变,可以调节湿地内DO环境,为湿地内营造交替好-缺氧环境,利于硝化与反硝化过程.在曝气量为0.2 L-min-1、HRT为1 d时,曝气人工湿地对低污染水中TN、NH4+-N和NO3--N去除率分别可达90.15%、98.25%和86.22%,实现了 TN、NH4+-N和NO3--N同步高效去除.C/N和温度是影响TN和NO3--N去除效果的重要因子.随C/N增加,TN和NO3--N去除率明显提升;在进水C/N为5时,TN和NO3--N去除率达到最高,分别为68.49%和50.48%,其中TN去除率较无碳源时提高了 37.43%.此外,温度从8~12℃升高至28~321℃时,曝气CW脱氮速率逐步增大.相较于低温(8~12℃),在高温(28~32℃)时CW对TN和N03--N去除率分别提高了 29.37%和50.24%;而NH4+-N去除率受C/N和温度影响不大.  相似文献   

4.
为研究不同进水ρ(NO3--N)下海菜花湿地对氮磷的去除效果及海菜花的生长情况和经济效益,在进水ρ(NH4+-N)和ρ(TP)分别为(1.07±0.11)和(0.41±0.03)mg/L,水力负荷为0.05 m3/(m2·d)的条件下,构建了进水ρ(NO3--N)依次为(1.52±0.48)(5.62±0.41)和(9.78±0.24)mg/L的三组湿地.结果表明:① 进水ρ(NO3--N)为(1.52±0.48)(5.62±0.41)和(9.78±0.24)mg/L时,湿地运行稳定所需时间分别为15、55和69 d,ρ(NO3--N)越高,湿地运行稳定所需的时间越长;运行稳定后三组湿地出水ρ(NO3--N)分别为(0.24±0.03)(0.30±0.01)和(0.65±0.14)mg/L,NO3--N去除率均达85%以上.② 湿地运行50 d后出水ρ(TP)均高于进水,后续试验应对基质进行改良.③ 进水ρ(NO3--N)为(9.78±0.24)mg/L的湿地中海菜花叶片叶绿素及茎的收获量均明显低于其余两组湿地,较高的ρ(NO3--N)对海菜花生长有明显的抑制作用.④ 进水ρ(NO3--N)为(5.62±0.41)mg/L的湿地经济效益最大,为6.2×104元/(hm2·a).研究显示,ρ(NO3--N)低于10 mg/L时,海菜花湿地能有效去除低污染水中的NO3--N;当ρ(NO3--N)为5 mg/L左右时,湿地有较好的经济价值.   相似文献   

5.
不同填料UAFB-ANAMMOX反应器的脱氮效能   总被引:1,自引:0,他引:1  
由于厌氧氨氧化菌增殖速率缓慢,对环境因素敏感,导致反应器启动时间长且运行不稳定.以人工配水为研究对象,采用UAFB(升流式厌氧固定床)反应器,分别填充组合填料、聚氨酯泡绵和立体弹性纤维作为生物载体,对各载体的挂膜特征及厌氧氨氧化的实现与稳定特性进行了研究.结果表明:与聚氨酯泡绵和立体弹性纤维相比,组合填料在快速启动反应器及运行稳定性上有较大优势,反应器启动时间为42 d,稳定运行后期NH4+-N及NO2--N的去除率均达到90%以上,最大TN去除负荷(以N计)为1.239 kg(m3·d);并且组合填料挂膜效果较好,生物膜跟载体结合较紧密.以聚氨酯泡绵为载体的反应器启动时间(66 d)长,挂膜效果较差,膜易脱落;稳定运行后期NH4+-N及NO2--N的去除率分别大于90%与95%,最大TN去除负荷为1.268 kg(m3·d).以立体弹性纤维为载体的反应器对ρ(DO)和ρ(基质)及水力冲击等环境因素较为敏感,运行效果不稳定,最大TN去除负荷仅为0.724 kg(m3·d).  相似文献   

6.
人工芦苇湿地氨氮污染物去除及氨氧化菌群落多样性分析   总被引:2,自引:0,他引:2  
对不同质量浓度的NH3-N在水平潜流人工湿地内的去除过程进行考察,并且对比分析了去除率和硝化强度,利用PCR-DGGE技术研究了ρ(NH3-N)及植物种植等因素对人工湿地中AOB(氨氧化细菌)群落结构的影响. 结果表明:在水力停留时间为2.5d的情况下,模拟低污染水ρ(NH3-N)分别为0.6~0.7和4.5~5.0mgL时,芦苇湿地对TN的去除率分别为81.9%和62.2%. 较高的ρ(NH3-N)和种植芦苇有利于提高湿地硝化强度和AOB群落多样性. 系统运行50d时,处理高ρ(NH3-N)和低ρ(NH3-N)低污染水的芦苇湿地的硝化强度分别为0.164和0.103mg(kg·h);AOB群落Shannon-Weaver多样性指数(系统运行90d时)分别为2.32和1.75. 处理高ρ(NH3-N)的低污染水时,空白湿地和芦苇湿地的硝化强度分别为0.082和0.164mg(kg·h);AOB群落Shannon-Weaver多样性指数(系统运行90d时)从1.95增至2.32.  相似文献   

7.
詹旭  吕锡武 《环境科学学报》2007,27(11):1840-1844
通过构建水生动物-人工介质新型生态系统来研究太湖水源地水质改善效果.中试试验结果表明,对比3d和7d的水力停留时间(HRT),当HRT:7d,系统对TN、NO2--N、NO3--N、TP、PO4--P的平均去除率可分别达到79.00%、63.46%、14.57%、67.43%、35.81%;对比空白池,TN、NO2--N、NO3--N、TP、PO4--P的平均去除率仅为9.67%、7.09%、1.30%、9.92%、7.04%.通过该系统中水生动物的吸收和人工介质上微生物降解的协同作用,使得氮磷类污染物的去除效果明显.可见,水生动物-人工介质生态系统对改善太湖水源地水质有良好的效果,对构建安全的水源地生态系统具有积极的意义.  相似文献   

8.
潜流水平湿地对农业灌溉径流氮磷的去除   总被引:5,自引:0,他引:5       下载免费PDF全文
 构建了潜流水平芦苇湿地,对农业灌溉径流(TN约为7mg/L,TP约为0.5mg/L)中氮磷进行了为期1年的去除研究.在水力停留时间(HRT)为2,4,6d时,TP和TN的去除率均大于87%和68%.湿地对TN、NH4+-N和TP的去除受HRT的影响较大(P<0.05),对PO43--P的去除受HRT的影响较小.在不同HRT情况下,NH4+-N、NO2--N、NO3--N和PO43--P的去除率均高于93%,出水浓度一般均小于0.04mg/L.且出水中的TP和TN主要为有机态,存在一个TP和TN背景浓度.TN去除率与负荷之间具有很好的相关性(R2=0.9968),但是TP去除率与负荷之间相关性较差(R2=0.5987).以HRT为2d计算,1m2的芦苇床处理该农业灌溉径流的能力为0.1m3/d,出水TN和TP浓度可控制在0.50mg/L和0.154mg/L以下.  相似文献   

9.
人工富集微生物技术对太湖梅梁湾水源地氮磷的去除研究   总被引:3,自引:0,他引:3  
詹旭 《环境科技》2006,19(6):1-2
采用2种载体(PM和ACP)进行人工富集微生物的方法,来去除太湖梅梁湾水源地水中的氮磷污染物。通过研究不同的载体密度和水力停留时间对去除效率的影响,中试结果表明:当载体密度为13.1%,停留时间为7d,源水中ρ(TN)为2.95~6.41mg·L-1,ρ(NH4 -N)为0.49~3.31mg·L-1,ρ(NO2--N)为0.07~0.51mg·L-1,ρ(TP)为0.084 ̄0.25mg·L-1,ρ(PO4--P)为0.005~0.059mg·L-1的条件下,人工富集微生物技术对TN,NH4 -N,NO2--N,TP,PO4--P的平均去除率最高分别达到22.68%,57.08%,88.83%,45.36%,29.58%,可见利用人工富集微生物技术能有效去除水源地中的氮磷营养盐,对富营养化水源地水体的水质有明显的改善作用。  相似文献   

10.
潜流型人工湿地冬季污水净化效果   总被引:13,自引:2,他引:13       下载免费PDF全文
冬季通过对人工湿地系统采取保温措施,可有效维持和提高湿地内的温度,改善湿地净化效果;比较了种植不同植物湿地在不同运行方式下的污染物去除率.结果表明,通过控制湿地运行方式,可增高湿地系统温度和提高溶氧(DO)水平,从而提高COD、TN和TP的去除率;当水力停留时间(HRT)为5d时,湿地出水的TN和TP去除率分别达到72.5%和58.2%.  相似文献   

11.
Soil contaminated with heavy metals cadmium(Cd)and lead(Pb)is hard to be remediated.Phytoremediation may be a feasible method to remove toxic metals from soil,but there are few suitable plants which can hyperaccumulate metals.In this study,Cd and Pb accumulation by four plants including sunflower(Helianthus annuus L.),mustard(Brassica juncea L.),alfalfa(Medicago sativa L.), ricinus(Ricinus communis L.)in hydroponic cultures was compared.Results showed that these plants could phytocxtract heavy metals, the ability of accumulation differed with species,concentrations and categories of heavy metals.Values of BCF(bioconcentration factor)and TF(translocation factor)indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals.Changes on the biomass of plants,pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures.Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals,such as pH and Eh regulations,and so forth.  相似文献   

12.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

13.
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (∑CBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ∑ CBs in waterweeds ranged from 13.53×102 μg/g to 38.27×102μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs(DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County < Yunan County <Yun'an County < Gaoyao County according to the ∑CBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River.  相似文献   

14.
Degradation of 2,4-dichlorophenol(2,4-DCP)was studied in a novel three-electrode photoelectrocatalytic(PEC)integrative oxidation process,and the factors influencing the degradation rate,such as applied current,flow speed of O_2,pH,adscititious voltage and initial 2,4-DCP concentration were investigated and optimized.H_2O_2 was produced nearby cathode and Fe~(2 )continuously generated from Fe anode in solution when current and O_2 were applied,so,main reactions,H_2O_2-assisted TiO_2 PEC oxidation and E-Fenton reaction,occurred during degradation of 2,4-DCP in this integrative system.The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process,while it was only 31% in E-Fenton process and 46% in H_2O_2-assisted TiO_2 PEC process.So,it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect.By the investigation of pH,it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.  相似文献   

15.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   

16.
The effects of arsenic(As)were investigated on seed germination,root and shoot length and their biomass and some other factors to elucidate the toxicity of As.The results showed low concentrations of As(O-1 mg/kg)stimulated seed germination and the growth of root and shoot,however,these factors all decreased gradually at high concentrations of As(5-20 mg/kg).The contents Of O2-,MDA,soluble protein and peroxidase(POD)activity all increased with increasing As concentrations.Soluble sugar content,ascorbate peroxidase(APX),and superoxide dismutase(SOD)activities decreased at low concentrations of As,and increased at high concentrations of As.While acetylsalicylic acid(ASA)and chlorophyll contents,catalase(CAT)activity displayed increasing trend when the concentrations of As was lower than 1 mg/kg,and then decreasing trend.By polyacrylamide gel electrophoresis(PAGE).As induced the expression of POD isozymes of wheat seedlings.As induced the expression of CAT isozymes but inhibited the expression of SOD isozymes of wheat seedlings at concentrations lower than 1 mg/kg.However,As inhibited the expression of CAT isozymes but induced the expression of SOD isozymes at concentrations higher than 5 mg/kg.The results indicated As could exert harmfulness in the early development stage of wheat at inappropriate concentrations.  相似文献   

17.
This article explores the assessment of sustainability in fields subject to wind erosion. In the first part, simple sustainability audits are examined, as of soil depth and nutrients. Direct measurement of these characteristics has many problems, largely because of huge variability in space and time at all scales. Modelling still has its problems, but it may be possible to overcome many of them soon. It is true that wind erosion preferentially removes soil nutrients, but there are imponderables even here. The nutrient balance in many of these soils includes considerable input from dust. In West Africa, it has been shown that the amounts of calcium and potassium that are added in dust are sufficient to fertilize dispersed crops. In mildly acidic sandy soils, such as those found on the widespread palaeo- aeolian deposits, much of the phosphorus is fixed and unavailable to plants by the time it is removed by wind erosion, so that erosion has no added downside. Most of the nutrients carried by dust have been shown to travel close to the ground (even when they are attached to dust-sized particles), and so are trapped in nearby fallow strips, and are thus not lost to the farming system. Second, the sustalnabillty of a whole semi-arid farming system is explored. Wind erosion in semi-arid areas (like China, the Sahel and Norflawestern Europe) generally takes place on aeolian deposits of the recent geological past. Most of these soils are deep enough to withstand centuries of wind erosion before they are totally lost to production, and some of these soils have greater fertility at greater depth (so that wind erosion may even improve the soil). Finally some remarks are made about environmental change in relation to sustainability.  相似文献   

18.
Polychlorinated biphenyls (PCBs) in Xenopus laevis have been reported only for a few congeners. Additionally, there is very little information on the ability of Xenopus laevis to bioconcentrate PCBs. To address these issues, the tadpole Xenopus laevis was exposed to Aroclor 1254 mixtures in water at room temperature for 110 d followed by an additional 110 d of nonspiked PCBs in the water for the control group. During the whole process, bioconcentration factors (BCFs) of PCBs ranged from 1180 to 15670. For most PCB congeners, the highest and lowest bioconcentrations of the kinetic curves were found to be remarkably simultaneous, respectively. All 141 PCB congeners under the same experimental conditions had no linear correlation on the lgBCF versus lgKow relationship. The relationship between lgBCFs and lgKow followed a parabolic pattern indicative of selective bioconcentration, suggesting that the kinetic curves of the PCB congeners observed in the lifecycle of the tadpoles may be concentrated due to the amphibian special species and internal metabolism. In contrast, lgBCFs for PCBs were inversely related to lgKow, suggesting that a metabolism of the higher Kow PCB congeners occurred. These results support the author's conclusion that the tadpole Xenopus laevis plays major roles in the bioconcentration of PCB congeners, and demonstrated that the exposure kinetic curves of PCB congeners are complex. Besides the amphibian metamorphous development, the lifecycle of the tadpole Xenopus laevis also may be of importance in determining the bioconcentration of PCB congeners.  相似文献   

19.
Polymerase chain reaction(PCR)was used to amplify a 600-base pair(bp)sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil(Alfisol)and Red soil(Ultisol),and three different minerals(goethite,kaolinite,montmorillonite). DNA bound on soil colloids,kaolinite,and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted,10- and 20-fold.The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected.DNA bound on goethile was amplified irrespective of whether the complex was used directly,or diluted 10- and 20-fold.The amplification of mineral-bound plasmid DNA by PCR is,therefore,markedly influenced by the type and concentration of minerals used.This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.  相似文献   

20.
In order to understand the similarity or difference of inorganic As species uptake and transport related to phosphorus in As-hyperaccumulator, uptake and transport of arsenate (As(Ⅴ)) and arsenite (As(Ⅲ)) were studied using Pteris vittata L. under sand culture. Higher concentrations of phosphate were found to inhibit accumulation of arsenate and arsenite in the fronds of P. vittata. The reduction in As accumulation was greater in old fronds than in young fronds, and relatively weak in root and rhizome. Moderate increases, from 0.05 to 0.3 mmol/L, in phosphate reduced uptake of As(Ⅲ) more than As(Ⅴ), while the reverse was observed at high concentrations of phosphate (≥ 1.0 mmol/L). Phosphate apparently reduced As transport and the proportion of As accumulated in fronds of P. vittata when As was supplied as As(Ⅴ). It may in part be due to competition between phosphorus and As(Ⅴ) during transport. In contrast, phosphate had a much smaller effect on As transport when the As was supplied as As(Ⅲ). Therefore, the results from present experiments indicates that a higher concentration of phosphate suppressed As accumulation and transport in P. vittata, especially in the fronds, when exposure to As(Ⅴ); but the suppression of phosphate to As transport in the root or rhizome may be insignificant when P. vittata when exposure to As(Ⅲ) under sand culture conditions. The finding will help to understand the interaction of P and As during their uptake process in P. vittata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号