首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用瓦里关全球本底站和番禺气象局站地面观测的CO2浓度资料对改进的Carbon Tracker-2010(CT-2010)模式系统进行了验证.结果显示,CT-2010能较好地反映近地层CO2浓度的分布状况,在瓦里关地区,模拟值与观测值的决定系数(R2)为0.584,残差为4.49μmol·mol-1,相对误差为1.18%;在珠三角地区,上述3个参数值分别为0.430、13.89μmol·mol-1和3.63%.利用CT-2010模式对广东地区近地层典型CO2过程及其影响因素进行了模拟和分析研究.结果表明:在典型高、低浓度CO2过程中,以广州为中心的珠三角区域始终为CO2浓度高值区,从东北至西南方向的梅州、河源、广州、肇庆和云浮等区域存在明显的CO2聚集带.在典型高浓度CO2过程中,珠三角和粤北区域的CO2浓度上升最明显,而粤东和粤西地区的CO2浓度变化较小;在典型低浓度过程中,珠三角、粤北及粤东的CO2浓度波动明显小于过程前和过程后,而粤西地区的CO2浓度波动较大.这些变化主要是受到了风场、下垫面植被、相对湿度及气温等因子的显著影响.  相似文献   

2.
研究采用KZ(Kolmogorov-Zurbenko)滤波统计方法,结合数值模型情景分析技术,以CO为示踪污染物,对2013年1月-2017年12月珠江三角洲重点城市气象条件与源减排对CO浓度的影响进行了评估分析,结果显示:监测期间珠三角地区CO平均浓度为0.91 mg/m3,珠江三角洲重点城市CO浓度日变化呈现双峰型分布,早上08∶00-10∶00出现第1个峰值,下午20∶00左右出现第2个峰值;季节变化上整体呈现出冬季>春、秋季>夏季的特征;空间分布上珠三角、粤北地区浓度较高,粤东、粤西地区浓度则较低。KZ滤波统计方法显示污染源减排措施对珠江三角洲地区不同城市CO浓度贡献占比在85.79%~103.79%之间;WRF-CMAQ数值模型情景分析结果显示污染源减排措施对珠江三角洲地区不同城市CO浓度贡献占比在79%~96%之间;综合表明源减排措施对2013–2017年北京市不同点位CO浓度的改善起着主导作用。  相似文献   

3.
大气环境分区管理:以广东省为例   总被引:2,自引:2,他引:0  
从区域大气环境管理的角度出发,提出大气环境分区管理的理念.以广东省地区为例,利用空气质量数值模拟和卫星遥感反演分析相结合的方法,从气象要素模拟场、浓度要素模拟场和卫星图像解译中筛选出关键因子,形成大气环境管理分区指标体系,在此基础上,利用层次聚类分析法将广东省划分为严格控制区、持续改善区和协调发展区这3种大气环境管理分区类型.结果表明,广东省大气环境管理严格控制区、持续改善区和协调发展区分别占16.3%、28.0%和55.7%.严格控制区在珠三角、粤东、粤西和粤北所占的比例分别为27.9%、19.3%、4.4%和12.5%,区域内应实施最严格的大气环境管理政策以推动空气质量改善;持续改善区在珠三角、粤东、粤西和粤北所占的比例分别为34.4%、15.8%、7.8和34.5%,区域内应实施相对严格的大气环境管理政策以保障持续稳定达标;协调发展区在珠三角、粤东、粤西和粤北所占的比例分别为37.7%、64.9%、87.8%和53.0%,区域内应实施较为宽松的大气环境管理政策以保障相对良好的空气质量.总体而言,广东省大气环境管理压力主要集中在珠三角地区,粤北、粤东地区次之,粤西地区大气环境管理压力最小.  相似文献   

4.
长江三角洲背景地区CO2浓度变化特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析2009年1月~2010年12月临安区域大气本底站在线观测获得的CO2浓度,研究地面风向、地面风速、气团输送等因素对长江三角洲背景地区CO2浓度的影响.结果表明,临安站CO2浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在9.5′10-6~44.3′10-6 (V/V)之间;季节变化特征表现为冬春季高,夏季低,浓度年较差为10.1′10-6 (V/V).通过分析地面风向、地面风速和气团输送等因素对临安站CO2浓度的影响表明,引起CO2浓度升高的地面风向夏季主要为NW~NNE,冬季主要为NNE~ESE;地面风速越大,CO2浓度越小;气团远距离输送的影响主要取决于气团途径区域的CO2排放情况.  相似文献   

5.
为探究1997-2017年华东地区不同土地覆盖上空对流层NO_2柱浓度的变化特征,并评价中国环保"十二五"规划NOx减排政策在华东地区的实施效果,文章利用GOME、SCIAMACHY和GOME2A卫星遥感监测融合数据和土地覆盖数据,分析了华东地区和不同土地覆盖类型上空NO_2柱浓度的时空变化特征。结果表明:华东地区北部和南部对流层NO_2柱浓度差异显著,北部高南部低,NO_2柱浓度的高值主要分布在山东和长三角等区域。对流层NO_2柱浓度存在显著的周期性变化和季节性差异,冬季>秋季>春季>夏季。1997-2011年NO_2柱浓度呈增高趋势,年均增长率为0.768×10~(15)molec/(cm~2·a),2012-2017年呈下降趋势,年均降低率为1.08×10~(15)molec/(cm~2·a)。不同土地覆盖类型上空对流层NO_2柱浓度分布差异显著,其中建设用地、耕地和水域NO_2柱浓度较高,建设用地显著高于其他土地覆盖类型,林地上空NO_2柱浓度最低。1997-2011年各种土地覆盖类型上空NO_2柱浓度均呈现增长趋势,其中建设用地增速最快,为1.24×10~(15)molec/(cm~2·a),林地增速最慢,为0.31×10~(15)molec/(cm~2·a)。中国NOx减排政策在华东地区的实施效果良好,在环保政策的影响下能够实现低NO_x排放下区域经济的持续增长。  相似文献   

6.
利用Aura卫星上OMI传感器反演获取的2013-2014年对流层NO2垂直柱浓度,探究了天津市对流层NO2垂直柱浓度的时空分布特征及其与NO2质量浓度的关系。结果表明,天津市对流层NO2柱浓度年均值为18.67×1015molec/cm2,在津冀地区处于中等浓度水平。NO2垂直柱浓度空间分布极不平衡,表现出中部地区浓度偏高、南北两部浓度偏低的空间分布格局;NO2垂直柱浓度在各月份呈现"V"分布,表现出冬季浓度最高,春季次之,夏季最低的特点。OMI卫星反演的NO2月均柱浓度分布趋势及其值域比率与自动站监测数据质量浓度基本一致,柱浓度与质量浓度相关系数为0.694 8,满足0.01显著性水平检验,可根据对流层NO2柱浓度来反演地面NO2质量浓度。  相似文献   

7.
比较NOAA/CMDL本底观测站CO月均值序列和MOPITT卫星观测值时间序列,结果表明两者在时间变化规律上一致性较好。利用2000-2015年MOPITT观测的CO数据,展示了对流层CO浓度的空间分布和时间变化。中国地区MOPITTCO表面混合比与人口密度分布规律相似,呈现出东部高西部低的特征,其自然分界线与中国人口分界线——胡焕庸线相契合。中国大多数工业发达、人口密集的地区CO柱浓度在2000-2015年期间有一个温和的下降趋势,平均每年下降约3%。合成15 a的月平均值,显示中国CO柱浓度冬春季节较高,夏秋季节较低,峰值多在3、4月,谷值多在7月。但位于不同纬度地区CO柱浓度有着不同的季节变化规律,例如随着纬度的升高,春季到夏季的CO柱浓度下降幅度降低。造成CO浓度季节循环特征的原因是CO源和汇的季节变化规律以及与纬度相关的太阳辐射变化。  相似文献   

8.
利用OMI卫星遥感数据,分析2006-2011年长三角地区对流层NO_2的变化趋势和时空分布特征以及对其来源的讨论。结果表明长三角近6年来对流层NO_2垂直柱浓度年均值具有明显稳定的增长趋势,增长率到达49.63%。且具有浓度高值区域面积不断扩大,高值中心数量增多的特征。与其它地区相比长三角地区对流层NO_2浓度季节变化具有独特的特征,NO_2垂直柱浓度在冬季浓度达到极大值(14.29×10~(15)~20.84×10~(15)molec/cm~2),而大多地区如四川则在夏季达到极大值。此外,分析得出长三角地区对流层NO_2垂直柱密度变化与人类活动的密切关系。  相似文献   

9.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

10.
基于最新的TROPOMI反演的对流层NO2垂直柱浓度数据,利用Google Earth Engine平台分析了粤港澳大湾区近2a对流层NO2垂直柱浓度的分布及变化特征.结果表明, TROPOMI传感器反演的对流层NO2垂直柱浓度与地表NO2浓度监测值具有较好的相关性,反演产品能够反映地面真实的NO2污染状况;粤港澳大湾区NO2柱浓度分布呈现出较为显著的圈层结构,高NO2柱浓度区域面积约为4468km2,占大湾区总面积的8%,低NO2柱浓度地区的面积约为25331km2,占比超过了45%;大湾区上空的对流层NO2垂直柱浓度存在明显的“冬高夏低,春秋过度”的季节性差异和周期性波动特征;影响因子回归模型结果表明人类活动强度(DNB,夜间灯光)、植被状况(NDVI,植被指数)和地形因子(DEM,数字高程)与地区对流层NO2垂直柱浓度的分布有明显的相关性.本研究成果可为政府和决策者制定相关政策和措施提供借鉴.  相似文献   

11.
利用能分别代表珠江三角洲草地、城市绿地及地带性森林植被生态系统的番禺站、东莞站和鼎湖山站CO2净通量资料对CT-2010碳源汇反演模式系统进行了验证,并利用该模式初步分析了区域净碳通量的时空分布及不同生态系统的碳汇特征.结果表明: CT-2010模式模拟的珠江三角洲城市绿地、地带性植被、以及草地生态系统碳通量与站点观测结果具有较好的一致性,其拟合相关系数(r)高于0.60(P<0.01),小时、逐日、日变化的残差均值低于2.0μmol/(m2?s);模式一定程度上能反映3种生态系统碳通量的季节分布特征,但各月的模拟值均高于观测值,其中对城市绿地生态系统的模拟最接近,残差年均值为0.964μmol/(m2?s),对草地和地带性森林植被生态系统的模拟效果相当,残差年均值分别为 2.056,2.100μmol/(m2?s);2004~2005年期间珠江三角洲地区近地层净碳通量为3.43μmol/(m2?s),其中冬季最强,为1.4μmol/(m2?s),春季次之,为1.35μmol/(m2?s),秋季和夏季最低,分别为0.51和0.18μmol/(m2?s);在冬、春两季,珠江三角洲区域为强的碳源区,而在夏、秋季,粤北和粤东大部分地区为较弱碳汇区;2004~2005年期间珠江三角洲地区陆地生态系统的碳汇为-6.5×10-3PgC,其中农作物,草地/灌木,常绿针叶/阔叶混合林是吸收CO2的主要生态系统,其净通量占陆地生态系统的比率分别为42.01%,31.46%和26.53%.  相似文献   

12.
于夏末秋初在深圳市城市和郊区开展了大气OH自由基观测,结果显示OH自由基日间峰值平均浓度分别为6.0×106cm-3和5.9×106cm-3,与国内外其他地区相比处于中等水平.基于实测数据构建了拟合效果较好的本地化OH自由基参数化公式,应用于广东省OH自由基空间分布的表征,并进一步利用日间OH和NO2浓度之积反映光化学反应活性(AP).结果发现,2018年夏秋季广东省大气光化学反应活性总体上呈现珠江三角洲较高,AP达10.1×107μg/(m3·cm3),粤东、粤西、粤北地区较低的分布态势,AP分别为5.4×107, 5.9×107和7.7×107μg/(m3·cm3);同期的PM2.5和O3高值区域也集中在珠江三角洲,说明了调控光化学反应活性对珠江三角洲协同控...  相似文献   

13.
我国4个WMO/GAW本底站大气CH4浓度及变化特征   总被引:6,自引:4,他引:2  
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CH4在线观测系统,于2009~2010年在青海瓦里关、浙江临安、北京上甸子和黑龙江龙凤山这4个世界气象组织全球大气观测网(WMO/GAW)大气本底站对大气CH4进行了在线观测.临安站在所有季节中CH4浓度都表现出类似的日变化趋势,即浓度在每日~05:00(北京时间)达到最高值,在~14:00为最低.夏季龙凤山站CH4浓度表现出类似的规律,但其日变化振幅较大,达到216.8×10-9(摩尔分数,下同).上甸子站春、秋、冬季CH4浓度呈现类似变化趋势,但夏季日平均值较高,在晚间~20:00达到最高值,瓦里关站四季CH4浓度日变化均不明显.3个区域本底站(临安、上甸子和龙凤山)全年CH4本底浓度存在明显的变化,临安站CH4本底浓度在7月达到全年最低水平.龙凤山站则表现出相反的趋势,在8月达到全年最高值,其全年浓度表现出"W"型变化.冬季龙凤山和上甸子站CH4浓度高于春季和秋季.瓦里关站全年浓度变化较小,月平均浓度振幅仅为11.5×10-9.临安、上甸子和龙凤山3个区域本底站夏季CH4非本底数据占总数据的比例>70%.为分析气团传输的影响,对4站夏季高浓度时刻(瓦里关:CH4>1 870×10-9,龙凤山CH4>2 100×10-9,临安CH4>2 150×10-9,上甸子CH4>2 050×10-9)对应的气团轨迹进行聚类分析表明,夏季出现的高浓度CH4观测数据可能主要由气团传输所引起.  相似文献   

14.
广东省臭氧污染特征及其来源解析研究   总被引:12,自引:0,他引:12  
使用广东省近年大范围长期连续臭氧观测数据分析了珠三角与广东省的臭氧污染特征,并使用NAQPMS模型研究了广东省与典型城市不同季节的臭氧来源情况.结果表明:2014—2016年广东省的臭氧污染局部在改善.珠三角的臭氧浓度水平总体高于粤东西北地区,广东省臭氧总体上呈现出珠三角中南部和粤东东部部分地区较高、粤西污染相对较轻的分布态势.广东省的臭氧夏秋季浓度较高,冬春季浓度较低.广东省臭氧主要来源于本地排放,夏季占比为57%,其余季节约占40%,臭氧的跨省输送特征明显.珠三角西南部春夏季臭氧本地贡献约为50%,但秋冬季仅占19%~28%.若要减轻广东的臭氧污染,建议实施臭氧消峰行动,即在夏秋季节严控珠三角地区的臭氧前体物排放,特别是珠三角中部广州、佛山与东莞等城市的排放要重点控制.同时,强化粤东西北地区与周边省份的协同减排.  相似文献   

15.
为了探索海南地区对流层CO2浓度[以φ(CO2)计]时空变化特征,采用2002年9月—2012年2月AIRS反演的对流层中层CO2产品,利用北半球全球本底站瓦里关站和飞机观测φ(CO2)对该产品进行验证,结合统计分析方法对海南地区φ(CO2)的月、季、年平均值的时空变化特征进行了研究.结果表明:AIRS反演φ(CO2)与地基和不同纬度带海洋上空飞机观测数据对比均具有很好的一致性,并且与飞机观测验证偏差更小,二者相关系数均在0.9以上,总体月均值偏差小于2×10-6;全国φ(CO2)呈现北高南低的分布规律,并且存在较为明显的分界线,形成4个高值中心(塔克拉玛干沙漠、塔里木盆地、内蒙古西部和东北平原)和2个低值中心(青藏高原西南部和云南地区),海南地区平均φ(CO2)为382.67×10-6,略高于云南低值中心的381.45×10-6;全国φ(CO2)呈现明显逐年增加趋势,其年均增长速率为2.16×10-6,而海南地区亦呈现显著增加趋势,年均增长速率为2.11×10-6,低于全国水平;φ(CO2)呈季节性波动特性,全国φ(CO2)最高值出现在春季,而海南地区为夏季,最低值均出现在秋季;海南地区西部海域、陆地和东部海域上空φ(CO2)年增长速率分别为2.09×10-6、2.14×10-6和2.11×10-6,表明海南陆地上空增速略大于海洋地区,西部和东部海域上空增长速率基本保持一致.   相似文献   

16.
利用广东省86个地面观测站1980~2014年逐日能见度、相对湿度资料,在对“区域灰霾过程”与“单站灰霾过程”进行定义的基础上,分区域诊断典型灰霾天气过程(即连续三站3d及以上出现灰霾日的天气过程),并对其长期变化趋势及特征进行分析.结果表明:广东省的灰霾过程主要出现在珠江三角洲、粤北及粤东个别地区,并以珠江口以西的珠江三角西侧最为严重.“区域灰霾过程”以日平均能见度在5~10km之间的过程为主,没有出现过日平均能见度低于2km的重度灰霾过程.各“区域灰霾过程”的特征有所差异:首先是各“区域灰霾过程”出现峰值的时间略有差异.尽管灰霾过程均主要出现在10月~翌年4月,但粤北和粤东、西两翼最多出现在冬季(12月~翌年1月)、春季次之,而珠江三角洲地区则最多出现在春季(3~4月)、冬季次之.其次是各“区域灰霾过程”变化趋势的差异.珠江三角洲地区和粤北地区灰霾过程变化趋势比较相似,在2008年以前总体呈增多趋势,珠江三角洲地区增势最为显著的时段是2000~2008年,而粤北地区则是1991~2011年;粤西地区灰霾过程在2000年以前变化都比较平稳,2004年开始快速增多;粤东地区的灰霾过程近35年来虽有小的波动,但总体变化不大,呈稳中略减的趋势.利用M-K法和滑动t检验的突变分析表明,珠江三角洲地区灰霾过程的增多是一种不连续的突变现象,发生突变的时间点是1986年;粤北地区灰霾过程则在1992~1994年出现了突发性增多的现象;粤西地区灰霾过程也在2001年发生了突变.  相似文献   

17.
为了解包头市大气污染特征,利用包头市2014年ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)、ρ(CO)和ρ(O3)环境空气自动监测数据,结合气象参数,分析了包头市大气污染特征及其影响因素.结果表明:① 包头市春季大气污染以PM10为主,夏季以O3为主,秋冬两季PM10和PM2.5均有不同程度污染. ② ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)的24 h平均值和ρ(O3)日最大8 h平均值分别有153、76、10、6和3 d超出GB 3095-2012《环境空气质量标准》二级标准限值,ρ(CO)24 h平均值全年达标. ρ(PM10)、ρ(PM2.5)和ρ(NO2)年均值分别为GB 3095-2012二级标准限值的2.2、1.6和1.2倍,ρ(SO2)年均值达标. ③ PM2.5/PM10(质量浓度比)四季分布为冬季(0.45)>秋季(0.39)>夏季(0.36)>春季(0.27),年均值为0.37,粗颗粒污染特征明显. ④ SO2/NO2(质量浓度比)四季分布为冬季(1.76)>春季(1.15)>秋季(0.82)>夏季(0.75),年均值为1.12,并且取暖季明显高于非取暖季,说明冬季燃煤取暖对包头市空气质量有重要影响. ⑤ 包头市的严重污染主要有沙尘型和煤烟型2种. ⑥ 系统聚类分析表明,扬尘引起的PM10对包头市环境空气质量有重要的影响,以SO2和CO为排放特征的燃煤对PM2.5有较大的贡献.   相似文献   

18.
珠江三角洲大气细颗粒物的致癌风险及源解析   总被引:11,自引:6,他引:5       下载免费PDF全文
胡珊  张远航  魏永杰 《中国环境科学》2009,29(11):1202-1208
于2004年4、7、10月和2005年1月对广州、深圳大气细颗粒物(PM2.5)中17种多环芳烃(PAHs)的浓度进行了分析,以苯并[a]芘(BaP)为毒性参照物的致癌毒性当量浓度(BaPeq),通过线性剂量-反应模型计算了呼吸致癌风险水平,结合源排放谱和化学质量平衡受体模型(CMB),研究了对致癌风险的各排放源贡献.结果表明,PAHs的浓度为5.87~63.36ng/m3,平均浓度深圳为32.68 ng/m3,广州为28.15ng/m3,且呈冬高夏低的分布规律.BaP和BaPeq日均超标率达到2.78%和5.56%,相对于WHO的日均标准的超标率达到50.0%和61.1%.该地区呼吸致癌风险平均水平为1×10-6~1×10-5,高于日常活动所致风险,低于引起关注的最低风险值.共解析出3种OC及致癌风险的排放源,分别为燃煤排放、机动车排放、生物质燃烧,其中燃煤排放和生物质燃烧贡献最大,对OC及BaPeq的贡献呈现相似规律.  相似文献   

19.
城市主要大气污染物时空分布特征及其相关性   总被引:1,自引:0,他引:1       下载免费PDF全文
为制订合理的大气污染物减排措施,利用中国环境监测总站公布的2015年1-12月299座城市实时发布的环境空气颗粒物(PM2.5和PM10)及气态污染物(CO、NO2和SO2)的质量浓度数据,对其进行了时空分布特征及其相关性研究.结果表明:① 2015年城市环境空气颗粒物污染严重,299座城市的ρ(PM2.5)、ρ(PM10)年均值分别主要集中在25~60和40~110 μg/m3,年均值达到GB 3095-2012《环境空气质量标准》二级标准的城市所占比例分别仅为24%和38%.② 城市大气污染物浓度具有明显的季节性特征,基本呈冬季>春秋季>夏季的趋势,其中冬季ρ(PM2.5)、ρ(PM10)、ρ(CO)、ρ(NO2)、ρ(SO2)分别为(73±27)(114±42)(1.49±0.61)(36±14)(42±33)μg/m3.③ 高ρ(PM2.5)和ρ(PM10)主要集中在华北平原,年均值分别为(70±16)(117±22)μg/m3;高ρ(CO)主要出现在山西省,年均值为(1.76±0.48)mg/m3;高ρ(NO2)主要分布在京津冀、山东省和长江三角洲,年均值分别为(42±6)(39±9)(34±8)μg/m3;高ρ(SO2)主要分布在山西、山东两省,年均值分别为(54±10)(41±16)μg/m3.④ Pearson相关系数研究表明,我国城市环境空气颗粒物与气态污染物具有较强的复合性,并且具有秋冬季明显强于春夏季的季节性特征.研究显示,我国城市大气污染具有较强的季节性、区域性与复合性,在降低环境空气颗粒物浓度的同时,对气态污染物的削减也不容忽视.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号