首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 579 毫秒
1.
This paper investigates overall CO2 balances of combined heat and power (CHP) plants with CO2 capture and storage (CCS) in Kraft pulp and paper mills. The CHP plants use biomass-based fuels and feature advanced gasification and combined cycle technology. Results from simple process simulations of the considered CHP plants are presented. Based on those results and taking into account the major direct and indirect changes in CO2 emissions, the study shows that implementing CCS leads to steep emission reductions. Furthermore, a preliminary cost assessment is carried out to analyse the CO2 mitigation cost and its dependence on the distance that the CO2 must be transported to injection sites.  相似文献   

2.

Biomass-based combined heat and power (CHP) generation with different carbon capture approaches is investigated in this study. Only direct carbon dioxide (CO2) emissions are considered. The selected processes are (i) a circulating fluidized bed boiler for wood chips connected to an extraction/condensation steam cycle CHP plant without carbon capture; (ii) plant (i), but with post-combustion CO2 capture; (iii) chemical looping combustion (CLC) of solid biomass connected to the steam cycle CHP plant; (iv) rotary kiln slow pyrolysis of biomass for biochar soil storage and direct combustion of volatiles supplying the steam cycle CHP plant with the CO2 from volatiles combustion escaping to the atmosphere; (v) case (iv) with additional post-combustion CO2 capture; and (vi) case (iv) with CLC of volatiles. Reasonable assumptions based on literature data are taken for the performance effects of the CO2 capture systems and the six process options are compared. CO2 compression to pipeline pressure is considered. The results show that both bioenergy with carbon capture and storage (BECCS) and biochar qualify as negative emission technologies (NETs) and that there is an energy-based performance advantage of BECCS over biochar because of the unreleased fuel energy in the biochar case. Additional aspects of biomass fuels (ash content and ash melting behavior) and sustainable soil management (nutrient cycles) for biomass production should be quantitatively considered in more detailed future assessments, as there may be certain biomass fuels, and environmental and economic settings where biochar application to soils is indicated rather than the full conversion of the biomass to energy and CO2.

  相似文献   

3.
The power sector in Thailand is the largest contributor to CO2 emissions. There is high potential to mitigate CO2 emission via alternative power generating plants. Alternative plants considered in this study include nuclear plants, integrated gasification combined cycle plants, biomass-based plants and supercritical thermal power plants. The biomass-based plants considered here are fueled with four types of biomass; paddy husk, municipal solid waste (MSW), fuel wood and corncob. The methodology for the optimal expansion plan of the power generating system over the planning horizon is based on the least-cost approach. The results from the least-cost planning analyses show that the nuclear alternative has the highest potential to mitigate not only CO2 but also other airborne emissions. Moreover, the nuclear option is the most effective abatement strategy for CO2 reduction due to its negative incremental cost of CO2 reduction.  相似文献   

4.
Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO2) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO2 with a conversion rate of approximately 4% CO2 per hour, generating a steady supply of oxygen (6 mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500 MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups.  相似文献   

5.
CO2 capture and utilization (CCU) is an effective strategy to mitigate global warming. Absorption, adsorption and membranes are methods used for CO2 separation and capture, and various catalytic pathways have also been developed for CO2 utilization. Although widely researched and used in industry, these processes are energy-intensive and this challenge needs to be overcome. To realize further optimization, novel materials and processes are continuously being developed. New generation materials such as ionic liquids (ILs) have shown promising potential for cost-effective CO2 capture and utilization. This study reviews the current status of ILs-based solvents, adsorbents, membranes, catalysts and their hybrid processes for CO2 capture and utilization. The special properties of ILs are integrated into new materials through hybridization, which significantly improves the performance in the process of CCU.  相似文献   

6.
姜龙  何川  李金晶 《环境科学》2023,44(2):1139-1148
总结了国内外粉煤灰用于CO2捕集、利用和封存的不同技术研究进展,同时对今后的研究和机遇进行了展望.粉煤灰自身可通过直接干式、半干式、湿式和间接方法对CO2进行矿化捕集封存,在CO2矿化的同时降低粉煤灰自身重金属的浸出,并且矿化后的粉煤灰因有效降低游离CaO和MgO的含量而更适合于制作混凝土添加剂.粉煤灰也可制成活性炭、沸石和多孔二氧化硅等产品,并对CO2进行物理吸附捕集,制成产品的类型主要取决于粉煤灰自身的成分组成和理化性质.在CO2利用方面,粉煤灰除了可拓展建材的利用途径外,还可制作CO2多种化学工艺所需催化剂或催化剂载体,以及制作新型材料拟薄水铝石等.我国“双碳”目标的提出及燃煤电厂粉煤灰自身的理化特性为粉煤灰提供了一条新的综合利用途径.  相似文献   

7.
In Finland the percentage of biomass fuels of total primary energy supply is relatively high, close to 17%. The share of biomass in the total electricity generation is as much as 10%. This high share in Finland is mainly due to the cogeneration of electricity and heat within forest industry using biomass-based by-products and wastes as fuels. Forest industry is also a large user of fossil-based energy. About 28% of total primary energy consumption in Finland takes place in forest industry, causing about 16% of the total fossil carbon dioxide emissions.The Kyoto protocol limits the fossil CO2 and other greenhouse gas emissions and provides some incentives to the Finnish forest sector. There are trade-offs among the raw-material, energy and carbon sink uses of the forests. Fossil emissions can be reduced e.g. by using more wood and producing chemical pulp instead of mechanical one. According to the calculation rules of the Kyoto protocol Finnish forests in 2008–2012 are estimated to form a carbon source of 0.36 Tg C a−1 due to land use changes. Factually the forest biomass will still be a net carbon sink between 3.5 and 8.8 Tg C a−1. Because the carbon sinks of existing forests are not counted in the protocol, there is an incentive to increase wood use in those and to decrease the real net carbon sink. Also the criteria for sustainable forestry could still simultaneously be met.  相似文献   

8.
Biochar addition to agricultural soil has been suggested to mitigate climate change through increased biogenic carbon storage and reduction of greenhouse gas emissions. We measured the fluxes of N2O, CO2, and CH4 after adding 9 t ha?1 biochar on an agricultural soil in Southern Finland in May 2009. We conducted these measurements twice a week for 1.5 months, between sowing and canopy closure, to capture the period of highest N2O emissions, where the potential for mitigation would also be highest. Biochar addition increased CH4 uptake (96% increase in the average cumulative CH4 uptake), but no statistically significant differences were observed in the CO2 and N2O emissions between the biochar amended and control plots. Added biochar increased soil water holding capacity by 11%. Further studies are needed to clarify whether this may help balance fluctuations in water availability to plants in the future climate with more frequent drought periods.  相似文献   

9.
Energy conservation is a key measure for reducing CO2 emissions. However, realising the emission reduction potential of an energy conservation investment depends on many factors, such as energy prices. The EU emissions trading scheme has made the investment analysis more complicated and increased the economic value of operational flexibility under fluctuating carbon prices. The different operational options in industrial energy production complicate the estimation of CO2 reduction potential in the investment phase. Increasing operational flexibility enables optimisation in the economic dimension, which may lead to less than optimum CO2 reduction. In our case study, which analysed the effects of an energy conservation investment made in the pulp and paper industry, the deviation from the expected emission reduction was around 30% over the period from 2000 to 2007. However, it seems that with high carbon prices, increasing operational flexibility has no significant effect on the carbon emissions. In policy-making, the freedom of action that is made possible by increasing operational flexibility should be taken into account when evaluating the contribution of an individual energy efficiency investment towards meeting the national targets for energy efficiency improvement and CO2 emission reduction.  相似文献   

10.
Pulp industry plays an important role in the structure of European economy and society. Paper pulp manufacture, the industrial utilization of plant biomass, is increasing every year. In Spain, Eucalyptus is the dominant raw material and the Kraft cooking and total chlorine free (TCF) bleaching processes lead the procedures of Eucalyptus paper pulp production. This paper aims to identify and quantify the environmental impacts associated to Eucalyptus TCF pulp manufacture by using Life Cycle Assessment (LCA) as an analytical tool. The system has been defined using a cradle-to-gate perspective, that is to say from forest activities to the exit gate of the pulp mill. The production of chemicals consumed in the cooking and bleaching stages as well as the on-site energy production system is the elements that contribute the most to all impact categories analyzed (more than 50% of total contributions), except for the eutrophication potential where forest activities and waste treatment play an important roles (about 52% of total). Specific actions associated to the recovery boiler, lime kiln and digestion stage could considerably reduce the environmental impact and improve the environmental performance of the Spanish paper pulp industry.  相似文献   

11.
The objective of this paper was to provide a preliminary analysis of energy utilization from industrial waste in Taiwan, a densely populated island country with high dependence on imported energy. The discussion thus focused on the status of industrial waste generation and its management since the year 2002. This paper also presented the updated information about the new/revised regulations concerning the governmental regulations and policies for promoting industrial waste as energy source as well as controlling the emissions of hazardous air pollutants from industrial waste-to-energy facilities. It showed that the main types of combustible waste in the industrial sector of Taiwan include pulp sludge, scrap wood, sugarcane bagasse, textile sludge and scrap plastics, which were being reused as auxiliary fuel in the utilities (e.g., boiler and incinerator). Based on their reported quantities, the energy potential and the environmental benefit of mitigating CO2 emissions were also analyzed in the study.  相似文献   

12.
Carbon footprint (CFP) of sugar produced from sugarcane in eastern Thailand was estimated from greenhouse gas emissions (CO2, CH4, and N2O) during the sugarcane cultivation and milling process. The use of fossil fuels, chemical and organic fertilizer and sugarcane biomass data during cultivation were collected from field surveys, questionnaires and interviews. Sugar mill emissions, fossil fuel utilization and greenhouse gas emission from wastewater treatments were included. The results show that sugar production has a carbon footprint of 0.55 kg CO2e kg?1 sugar. This carbon footprint was a sum of 0.49 kg CO2e kg?1 sugar from sugarcane cultivation and 0.06 kg CO2e kg?1 sugar from the milling process. For the cultivation part, most of the GHGs emissions were from fertilizer, fossil fuel use and biomass burning. The CFP in eastern Thailand is sensitive to the type of data selected for calculation and of variations of farm inputs during sugarcane cultivation. There was no significant difference of CFP among farm sizes, although small farms tended to give a relatively higher CFP than that of medium and large farms.  相似文献   

13.
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.  相似文献   

14.
庄颖  夏斌 《环境科学研究》2017,30(7):1154-1162
交通领域是二氧化碳排放的重要领域,为研究广东省的交通碳排放及影响因素,利用IPCC(联合国政府间气候变化专门委员会)在温室气体清单指南中提供的方法估算了广东交通碳排放量,并应用LMDI分解法(对数平均指数法)对广东交通碳排放进行因素分解分析.结果表明:① 2001-2010年广东交通碳排放量从1 950.98×104 t增至6 068.41×104 t,其中交通运输业碳排放是广东交通碳排放的主体,私人交通碳排放已成为广东交通碳排放不可忽视的组成部分.② 交通运输业中的公路碳排放量占比最大,占56%~64%;铁路的碳排放量占比最小,占0.6%~1.6%;水运具有较大的节能优势;民航单位周转量碳排放量最高.③ 交通运输业发展水平、运输结构、私人汽车数量规模对广东交通碳排放增加的贡献率分别为68.79%、36.14%、18.66%,是拉动广东交通碳排放增长的主要因素;运输强度与能源强度的贡献率分别为-18.1%、-6.46%,是抑制交通碳排放增长的因素.广东可以通过采取优化交通运输结构、使用替代清洁能源等措施减少交通碳排放.   相似文献   

15.
中国平板玻璃生产碳排放研究   总被引:3,自引:0,他引:3  
平板玻璃行业是典型的高能耗、高排放行业,目前关于中国平板玻璃行业的碳排放问题还没有得到深入的研究.因此,本文调查了中国300余条主要的平板玻璃生产线,并在此基础上从范围1(工艺过程和化石燃料燃烧引起的直接排放)和范围2(净购入电力和热力在生产阶段引起的间接排放)评估了中国平板玻璃行业从2005年到2014年的CO_2排放情况.结果发现,中国平板玻璃行业CO_2排放量逐年增加,由2005年的2626.9×10~4t逐步上升到2015年的4620.5×10~4t.研究表明:能源消耗是平板玻璃行业碳排放的最主要来源,占比在80%左右,节能降耗是促进平板玻璃行业CO_2减排的主要途径;平板玻璃生产原料中碳酸盐的热分解是CO_2的主要来源之一,占总排放量的20%左右,控制平板玻璃配合料的气体率,在减少平板玻璃生产过程中的CO_2排放有很大潜力;推荐平板玻璃新建项目使用天然气并配备大型熔窑(日熔化量650 t以上)的浮法玻璃生产线,以减少CO_2排放.  相似文献   

16.
Technological and regulatory responses to large-scale environmental threats, such as depletion of the natural resources and climate change, tend to focus on one issue at time. Emerging carbon capture and storage (CCS) technologies that are in different stages of development offer a case that demonstrates this dilemma. This article approximates the implications of two emerging CCS applications on existing steel mill’s CO2 emissions and its use of material resources. The evaluated applications are based on the mineralization method and the comparative case represents two versions of a geological CCS method. The results of the evaluation indicate that if technical bottleneck issues related to CO2 sequestration with mineralization can be solved, it can be possible to achieve a similar CO2 reduction performance with mineralization-based CCS applications as with more conventional CCS applications. If the CO2 capturing potential of mineralization-based applications could be taken into use, it could also enable the significant improvement of material efficiency of industrial operations. Urgent problem hampering the development of mineralization-based CCS applications is that the policy regimes related to CCS especially in the European Union (EU) do not recognize mineralization as a CCS method. Article suggests that the focus in the future evaluations and in policy should not be directed only on CO2 sequestration capacity of CCS applications. Similarly important is to consider their implications on material efficiency. Article also outlines modifications to the EU’s CCS policy in terms of the formal terminology.  相似文献   

17.
Approximately half of the carbon in trees can be fixed to charcoal by carbonization. Porous charcoal is useful as a soil amendment for crop fields and forests, and also as a water purifying agent. Given these facts, charcoal production should be recognized as one of the most promising CO2 sequestration methods. A project on biomass utilization and forest conservation is proposed as a Clean Development Mechanism (CDM) project, by incorporating the carbonization of biomass residue and waste from tree plantations and pulp mills, and also the utilization of carbon products in various fields. A feasibility study was conducted with the existing project of an industrial tree plantation and pulp production in Indonesia. If conventional charcoal-making methods are used, a total of 368,000 t yr-1 of biomass residue and waste could be transformed into charcoal of77,000 t yr-1, and the carbon emission reductions by the project reaches 62,000t-C yr-1 (or 230,000 t-CO2yr-1) in consideration of the project baseline. This charcoal project could provide jobs for approximately 2,600people. The soil fertility in man-made forests could be maintained by returning charcoal to the original forests. Therefore, the project would be beneficial to the regional economy. In addition, the present charcoal project is expected to give more positive impacts than negative ones, or leakage, beyond the project boundary. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Oil shortage and environmental deterioration urge people to pay more and more attention to Biomass-based Fuel Ethanol (BFE), because it is renewable and apparently environmentally friendly. This paper aims to assess and compare the air emissions of three BEF products from different feedstock planting areas in China. For the purpose of a “cradle to grave” study of biomass-based ethanol fuel as a substitute transportation fuel, the authors chose “vehicle fueled by biomass-based E10 (a blend of 10% ethanol and 90% gasoline, v/v)” as the subject. Then, life cycle emission models of Wheat-based E10 from central China, Corn-based E10 from northeast China, and Cassava-based E10 from southwest China were set up based on surveys; life cycle emission functions of CO2, CO, N2O, NOx, SO2, CH4, VOC, and PM10 were constructed and value of each emission category was calculated based on Monte Carlo simulation of the life cycle emission models. The calculation results showed that compared with gasoline-fueled vehicles, biomass-based E10-fueled vehicles release less CO2 and VOC in their lifecycles, but wheat-based E10-fueled and cassava-based E10-fueled ones have more emissions of CO, CH4, N2O, NOx, SO2, PM10 and corn-based E10-fueled ones have more emissions of CH4, N2O, NOx, SO2, PM10. Suggestions on reducing the emissions have been proposed for future actions.  相似文献   

19.
利用IPCC的参考方法测算并比较分析了2005-2009年我国30个省(市、自治区)的CO2排放总量、人均排放量、排放强度、综合能源排放系数等重要指标,并在此基础上,依据人均GDP、第二产业比重和能源利用结构与碳排放强度的关系,将各省(市、自治区)划分为不同的CO2排放类型。研究结果表明,省域间各指标差异较大,影响碳排放的因素也不尽相同。省域减排的政策、途径和措施须充分考虑各自的经济发展水平、产业结构和能源利用结构等因素。  相似文献   

20.
Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons   总被引:3,自引:0,他引:3  
A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2 /g-sorbent in 15% CO2 /N2 at 75°C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2 . In addition, the developed sorbent could be regenerated easily at 100°C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号