首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
北京机动车尾气排放特征研究   总被引:7,自引:0,他引:7  
近年来随着机动车保有量的快速增加,北京市机动车排放污染受到越来越多的关注。本研究应用COPERTⅣ模型计算了北京不同类型机动车排放因子,根据保有量和年均行驶里程等基础数据计算了2009年机动车尾气污染物排放量;调查了北京典型道路车流量和车辆运行速度等参数,计算机动车尾气排放强度,得出了典型道路不同污染物的综合排放因子;应用COPERTⅣ模型分析了车速对不同污染物排放的影响,将基于G IS的机动车活动强度、行驶速度和排放因子结合在一起,得到了北京机动车尾气排放网格分布清单。结果表明:CO排放量为71.58×104t,HC排放量为7.95×104t,NOx排放量为8.77×104t,PM排放量为0.38×104t。北京城区高峰小时CO排放量为143.9 t/h,HC排放量为18.6 t/h,NOx排放量为12.5/h,PM10排放量为1.14 t/h。  相似文献   

2.
目前国内外关于道路扬尘排放的计算多采用美国环境保护局推荐的AP-42排放因子法,直接计算道路扬尘的年均排放总量,但其动态化程度不足,难以满足日益增长的精细化管理需求. 本研究采用车速-流量模型构建高时间分辨率的道路车流量获取方法. 以天津市为例,采用自下而上的方法,结合本地化的排放因子以及天津市采取的道路扬尘控制措施,借助GIS平台编制高时空分辨率的道路扬尘排放清单,精细反映天津市道路扬尘排放的时空分布特征. 结果表明:①时间尺度上,受早晚高峰的影响,城市道路在08:00—09:00与18:00—19:00扬尘排放强度较大,13:00—14:00是白天扬尘排放强度的低值时段. ②空间尺度上,夜间(03:00—04:00)道路扬尘排放强度的高值区域集中在高速路段,白天扬尘排放强度的低值时段(13:00—14:00)集中在城市道路中支路密集的地区,道路扬尘排放强度高峰时期(18:00—19:00)集中在各类型的城市道路. 全年道路扬尘排放高值区域集中在城市支路和郊区道路. ③天津市内六区全年道路扬尘PM2.5、PM10、TSP排放量分别为603、2 492和12 986 t,相较以往研究有所下降. 从区域看,道路扬尘排放总量呈偏远郊区>环城四区>市内六区的规律. 城市道路采取的洒水措施明显降低了道路扬尘排放总量. 研究显示,受交通扰动影响,道路扬尘排放呈现明显的时空分布差异.   相似文献   

3.
四维通量法施工扬尘排放模型的建立与应用   总被引:6,自引:2,他引:4  
田刚  黄玉虎  李钢 《环境科学》2009,30(4):1003-1007
建立了一种与美国环保局推荐的暴露高度浓度剖面法类似、应用实测数据计算施工扬尘排放量的数学模型——四维通量法模型,以及一套与该模型相匹配的施工扬尘排放量监测方案.采用四维通量法计算施工扬尘排放量,更加简洁方便,并且可以较好地消除偶然因素对计算结果的干扰.将北京城近郊区40多个建筑工地的实测数据代入该数学模型所得到的北京市施工扬尘中TSP排放因子为0.492 kg/(m2·30 d),在数值上是美国环保局AP-42文件推荐排放因子的1.83倍.建议采用本研究得出的本地化排放因子来建立北京市施工扬尘排放清单.  相似文献   

4.
北京典型道路交通环境机动车黑碳排放与浓度特征研究   总被引:3,自引:2,他引:1  
本研究对2009年北京市典型道路(北四环中路西段)进行实际交通流监测和调研,分析了总车流量、车型构成和平均速度的日变化规律.应用北京机动车排放因子模型(EMBEV模型)和颗粒物黑碳排放的研究数据,计算该路段的黑碳平均排放因子和排放强度.根据同期观测的气象数据,应用AERMOD模型对道路黑碳排放进行了扩散模拟,并根据城市背景站点和道路边站点的监测数据对模拟结果进行了验证.研究表明,该路段黑碳平均排放因子与重型柴油车在总车流中所占比例呈现出极强的相关性,由于北京市实行货车区域限行制度,日间时段总车流的平均黑碳排放因子为(9.3±1.2)mg·km-1·veh-1,而夜间时段上升至(29.5±11.1)mg·km-1·veh-1.全天时均黑碳排放强度为17.9~115.3g·km-1·h-1,其中早(7:00—9:00)晚(17:00—19:00)高峰时段的黑碳排放强度分别为(106.1±13.0)g·km-1·h-1和(102.6±6.2)g·km-1·h-1.基于同期监测数据验证,AERMOD模型的模拟效果较好.模拟时段的道路黑碳排放对道路边监测点的平均浓度贡献为(2.8±3.5)μg·m-3.由于局地气象条件差异,日间和夜间的机动车排放对道路边黑碳的模拟浓度存在显著差异.日间时段,小型客车排放对道路边站点的黑碳浓度贡献最高,达(1.07±1.57)μg·m-3;其次为公交车,达(0.58±0.85)μg·m-3.夜间时段货车比例明显上升,其黑碳排放占主导地位,贡献浓度(2.44±2.31)μg·m-3.  相似文献   

5.
当前复合燃料温室气体(GHG)排放量的计算普遍采用IPCC排放因子法,此法的运用需要依赖准确的燃料消耗计量、燃料氧化率和燃料低位热值等数据,其缺省因子是否适合有待商榷。本文通过采用实地监测手段,在获得了企业固定排放源设备的相关参数后,采用IPCC排放因子法、质量平衡法、时间比法、负荷法和热值分配法等几种方法对企业GHG排放量进行了计算。结果显示:IPCC排放因子法的计算结果并不能准确地反映企业温室气体的排放情况,而热值分配法可以较好地对燃烧复合燃料的固定燃烧源GHG排放量进行计算。建议有条件的地区采用监测法对固定燃烧源GHG排放量进行计算,而采用热值分配法对燃烧复合燃料的固定燃烧源拓展时间段的GHG排放量进行计算。  相似文献   

6.
分析秸秆焚烧事件引起的空气污染状况,常使用CMAQ、NAQPMS、WRF-CHEM等模型进行空气质量模拟,而污染源排放清单是模拟模型的关键输入.为满足模型清单输入要求,以2014年5月7日四川盆地内发生的一次由油菜秸秆焚烧引起的重污染事件为例,采用排放因子法进行污染物年排放量估算,结合卫星火点数据、土地利用数据对其进行空间特征分析,并使用Bluesky CONSUME模型估算了污染物的烟羽抬升,结合激光雷达获取了气溶胶消光系数以分析其时间特征.结果表明:以2013年为基准年,全年区域内CO、NOx、SO2、PM2.5、PM10及NMVOC(非甲烷挥发性有机化合物)的年排放量分别为5 791.022、193.842、43.268、574.602、1 495.350和1 495.350 t,成都市、德阳市、绵阳市、眉山市、资阳市各污染物排放量占比分别为13.90%、22.39%、31.81%、12.11%、19.79%.各污染物排放量均在地面层呈3个大值中心、2个空值带的分布趋势.采用环境1B卫星和MODIS火点数据结合提取焚烧火点分析发现,5月7日四川盆地内5个城市均存在不同程度的秸秆焚烧情况.经空间分配后发现,此次排放的重点在德阳市及绵阳市南部,污染物排放量最大值出现在德阳市中部,成都市秸秆焚烧火点最少,污染物排放量也最小.受当天大气边界层高度的影响,污染物垂直分布主要集中在35 m以下,并在30 m左右形成污染物极大层.另外,受秸秆焚烧管制影响,在16:00-翌日04:00排放量呈逐渐上升趋势,09:00-16:00排放量较少.研究显示,秸秆焚烧源排放清单与前人研究结果较为一致,排放清单的烟羽抬升结果与气溶胶消光系数的垂直分布较为吻合.   相似文献   

7.
飞机QAR数据的空气污染物排放量计算研究   总被引:2,自引:0,他引:2  
民用飞机发动机污染物排放量的准确计算是排放控制和环境影响评价的基础。文章采用机载QAR记录数据的飞行过程还原和污染物排放量计算方法,通过对QAR数据的内插均分计算、滤波处理和加权计算,得到比较准确的飞行记录数据,以还原飞行的具体情况;然后在ICAO基准排放指数基础上,给出基于温度、湿度、高度、表速和燃油流量等参数的修正方法,以得到实际的排放指数,最后再计算出各种污染物的排放量。基于建立的模型和航空公司QAR记录数据,用DELPHI编程计算了B737-700飞机执行"重庆—上海"航班的污染物排放量,并将计算结果与相同条件下的ICAO参考值进行对比,分析了各飞行阶段污染物排放量的变化情况。结果表明,计算方法准确,可作为飞机污染物排放控制和机场环境评估等研究的依据。  相似文献   

8.
汽车污染已成为中国空气污染的重要来源,而重型柴油货车是汽车大气污染排放的主要贡献者。为揭示重型柴油货车的排放特征,基于高原地区云南省昆明市重型柴油货车GPS点数据,用Python语言提取重型柴油货车在各点轨迹段的平均速度、行驶里程等参数,采用机动车排放模型MOVES,模拟计算研究区域内HC、CO、NOx、PM2.5污染物排放量,并通过ArcGIS进一步分析其时空分布特征。结果表明:2021年1月3日昆明市研究区域内重型柴油货车HC、CO、NOx、PM2.5的排放量分别为11.7423,39.6386,102.2600,0.9192 kg;时间维度,重型柴油货车在2:00和22:00有明显的排放高峰,受路权及运输行业工作时间的影响;空间维度,排放的分布格局呈明显的空间异质性,受政策驱动的影响且与空间位置的布置密切相关,排放主要分布在汕昆高速、昆石高速及支路、立交交叉口处;区域内重型柴油货车小时平均速度、交通量与其小时排放量有密切关系。因此,可以针对重型柴油货车排放较高的时段和地区,采取必要的治理手段,...  相似文献   

9.
为改善2010年亚运会期间空气质量,佛山市对中心城区内部分道路进行试限行.采用欧洲COPERT模式,计算出不同排放标准、不同车速、不同车型下的机动车排放因子,通过交通流调查,获取限行前后典型道路交通流运行状态,并以此为依据评估限行后区内机动车污染减排效果.结果表明,限行期间,主要路段道路交通流量平均下降32.5%,车型比例变化较大,摩托车流量下降显著.各种污染物降幅比例并不一致.按照此流量降幅可以预计,如在区内全面展开机动车限行,单位路段污染物(CO、NOx、VOC、PM)年排放量分别下降48.1%、39.2%、43.6%、49.2%.  相似文献   

10.
运用CMEM模型计算北京市机动车排放因子   总被引:12,自引:4,他引:12  
采用由美国加州大学Riverside分校开发的综合模式排放模型(CMEM)分析和研究北京市机动车污染物的排放特征,以9辆代表北京市典型技术类型的轻型机动车为实验车辆,收集了运行CMEM模型所需要的数据和参数.通过CMEM模型Access 2.02版本计算,得到了在不同交通行驶状况下北京市4类典型轻型机动车的CO2,CO,HC,NOx单车排放因子及各车型综合排放因子.通过与同一车辆的在路实测排放因子比较发现,用CMEM模型计算的CO,HC和NOx与实测排放因子及排放特征有较好的一致性,因此适用于计算北京市机动车CO,HC和NOx排放因子.  相似文献   

11.
高时空辨识度的车流时空分布特征是研究区域机动车排放的重要基础,通过射频识别技术和车辆注册登记数据获得重庆市二环区域每10 min的车流量以及车辆技术特征信息,对比分析内环以内及以外区域的分车型、分道路类型、分排放标准和燃料类型的车流量时空变化特征.结果表明:①重庆市内环以内区域日均流量为1.8×104辆,约为内环以外区域的1.8倍.②内环以内区域小型客车、公交车、出租车的日均流量分别为内环以外区域的1.7、2.1和2.5倍,而重型货车的日均流量为内环以外区域的54.8%.③ 2个区域车辆的主要燃料类型为汽油、天然气、柴油、新能源,占比分别为71.7%~73.7%、15.1%~21.4%、5.5%~9.6%、1.3%~1.5%.④ 2个区域车辆的排放标准分布基本一致,主要排放标准为国Ⅳ(约占76.5%),国Ⅴ约占11.4%,国Ⅲ约占9.0%,国Ⅱ、国Ⅰ和国Ⅰ前的占比之和约为3.1%.⑤ 2个区域的小时总流量变化特征呈“M”型分布,早高峰时段为08:00—10:00,晚高峰时段为16:00—18:00.⑥ 2个区域小型客车、公交车的小时流量变化特征均与总流量变化特征基本一致,但出租车、轻型货车和重型货车在08:00仍保持明显的上升趋势,直到14:00才缓慢下降.⑦内环以内区域高速路、快速路、县道的高峰时段流量明显较高,分别为内环以外区域的5.5、2.5、6.2倍;而内环以外区域国道的高峰时段流量相对较高,约为内环以内区域的1.8倍.研究显示,重庆市二环内外区域的车流量和车辆技术特征信息的时空分布存在较大差异,建议完善城市实际道路车流的时空监测网络,为机动车排放清单的编制提供更好的数据支撑.   相似文献   

12.
天津市城区夏季VOCs来源解析   总被引:11,自引:0,他引:11  
对天津市气象铁塔处连续8天的(2010年8月19 日[-2010年8月26日)VOCs检测数据的分析与研究,采样频次为每日5次,采样时间从7:00至23:00,采样间隔2~3h,定量检测了 103种挥发性有机物.利用美国环保署正交矩阵因子(PMF)模型对天津市中心城区挥发性有机物(VOCs)进行了解析,共解析出5个可能...  相似文献   

13.
为深入了解济南市主城区道路环境黑碳(BC)污染的时空规律,并评估机动车等对BC排放的影响,该研究利用车载平台和微型黑碳仪在济南市主城区开展了为期一个月的道路BC走航观测并分析其时空分布特征. 结果表明:①济南市主城区道路环境BC小时平均浓度为7.29 μg/m3,且昼夜呈双峰特征,双峰分别出现在04:00—08:00和18:00—22:00,该时段处于道路柴油车行驶及人群出行时段. ②源自化石燃料燃烧的BC占比为82.55%,来自生物质燃烧的BC占比为17.45%. ③BC道路环境浓度呈主干道(7.27 μg/m3)>次干道(6.56 μg/m3)的特征,柴油车占比较大的北园高架上的BC平均浓度(7.18 μg/m3)高于汽油车占比较大的经十路(5.64 μg/m3). ④BC浓度峰值多出现在清晨/深夜交叉路口附近,距十字路口5~10 m时观测的BC浓度最高,表明BC浓度除了受车流量影响外,还受到路况、车型、车速、气象条件等因素的影响. 研究显示,相比汽油车,济南市道路环境BC污染的时空分布特征主要受重型柴油车车辆数、出行时间和行驶路段的影响.   相似文献   

14.
河北省各城市均已开展利用机动车保有量等宏观统计数据的城市移动源排放清单编制工作,但尚缺乏对跨省及全省各城市间国省道高时空分辨率的移动源排放清单研究.本研究利用2017年河北省国道、省道日均交通流量监测数据,计算了2017年河北省国道和省道机动车大气污染物排放量.结果表明:2017年河北省国道和省道机动车CO、HC、NOx、PM2.5和PM10排放量,与利用宏观统计数据计算得到的全省机动车排放总量相比,分别占27.8%、15.7%、55.6%、58.3%和58.5%.重型货车是国道和省道机动车CO、NOx、PM2.5和PM10排放的主要来源.河北省南部国省道的机动车排放量以南部各城市为中心呈网状辐射,东北部沿海地区的排放量主要在沧州-天津-唐山-秦皇岛-承德沿线分布,西北部则主要在保定-张家口-内蒙沿线分布.月均排放量分布情况为1月最高,9月最低;周日均分布情况为周一—周三逐日增加,周四开始回落,周日降至最低;每日小时平均分布呈现明显的双高峰现象,两次高峰分别出现在11:00和18:00左右;最低值出现在凌晨4:00.河北省内,各市国省道机动车污染物排放分担率前3位的依次为保定、沧州和张家口.跨省交通车辆排放的CO、HC、NOx、PM2.5、PM10分别占河北省国省道机动车总排放量的48.1%、48.7%、42.9%、41.3%和41.3%,其中天津市出入河北省的车辆排放分担率最高,其次是北京.京津冀应在区域层面建立机动车污染联合防治协调机制,从调整区域货运交通运输结构、推动柴油车污染控制措施升级等方面改善区域环境空气质量.  相似文献   

15.
基于环保检测数据,提出“里程-车龄”曲线用以获取满足“车辆类型-燃料种类-排放标准”三级分类的精细化年均行驶里程.使用《道路机动车大气污染物排放清单编制技术指南(试行)》推荐值、车辆类型均值、“里程-车龄”曲线3种方式获取年均行驶里程并分别建立排放清单,发现年均行驶里程的本地化与精细化可以极大降低行驶里程不确定性对排放清单准确性的影响.采用精细化年均行驶里程,计算得到青岛市2017年机动车CO、VOCs、NOx、PM10、NH3和SO2的排放量分别为7.07,1.14,2.84,0.10,0.08和0.08万t.分析排放构成可知,老旧车淘汰在当前仍可作为青岛市机动车排放治理的有效举措.结合路网信息与交通数据,得到0.01°×0.01°高时空分辨率网格化排放清单.结果表明,青岛市机动车排放分布在不同时段变化明显.以NOx为例,排放的早晚高峰分别出现在8:00与17:00,占到了全天总排放的8.17%和7.53%.同时,排放分布存在着空间异质性,排放从城市中心至边缘呈逐渐降低趋势,沿高速路呈明显带状分布.  相似文献   

16.
为实现个体车辆出行、排放行为的精细表征与挖掘,基于宣城市中心城区全量个体车辆的出行轨迹、技术参数、排放轨迹等多维交通大数据,以表征个体车辆出行过程的排放信息为主线,设计并构建车辆出行排放知识图谱.研究表明:①知识图谱直观地表征了“车辆-道路-出行-排放”信息的时空关联,可实现个体车辆在不同日期、不同时段、不同路段等多尺度出行特征的精细挖掘.以某辆小型客车为例,检索发现周一、周三出行主要连接的小时实体都为7:00、8:00和17:00,周五、非工作日出行连接的小时实体具有明显的随机性;周一、周三出行所连接的道路实体较少且基本一致,在宣水路、昭亭北路、昭亭南路的出行里程之和占比为63%~68%,周五、非工作日出行连接的道路实体则较为分散.②通过出行信息类、排放信息类实体的关联检索,可实现个体车辆出行排放时空特征的精细辨识和溯源分析.示例车辆的检索结果表明:周一车辆的CO日排放量为1.2g,是周六的2.5倍,同时在早高峰时段(7:00),车辆出行在交通繁忙路段时,伴随低水平车速,排放强度相对较高.  相似文献   

17.
目的 揭示跨介质航行器高速入水跳弹行为的机理,提高航行器的突防能力。方法 基于STAR-CCM+流体仿真软件,采用VOF多相流模型以及Schnerr-Sauer空化模型,计算航行器跳弹过程的空化流场,并运用重叠网格技术,耦合六自由度弹道方程,求解航行器的运动特性。利用所建立的计算模型,研究航行器在不同入水速度和角度下的空泡演化、水动力和弹道特性,揭示航行器产生跳弹现象的原因和规律。结果 航行器在小角度高速入水时,水下运动轨迹会发生很大的变化,经历了入水、浸水、出水3个阶段。结论 产生跳弹现象的主要原因是航行器在入水后,头部上下缘以及弹尾两侧受力不均,形成了向上的偏转力矩,使得航行器的俯仰角发生了较大的改变,并且随着航行器的入水速度加快,入水角度减小,跳弹现象越容易产生。  相似文献   

18.
上海中心城区夏季挥发性有机物(VOCs)的源解析   总被引:32,自引:7,他引:25  
2006~2008年夏季在上海徐家汇地区对大气中的挥发性有机物(VOCs)进行连续3h采样(6:00~9:00),共取得72个有效样本.同时,应用PCA/APCS(principal component analysis/absolute principal component scores)受体模型对大气中VOCs来源进行了分析.结果表明,上海夏季中心城区大气中VOCs主要有5个来源,分别为交通工具尾气排放、燃料挥发(液化石油气/天然气泄漏和汽油蒸发)、溶剂使用、工业生产和生物质/生物燃料燃烧+海洋源,其贡献率分别为34%、24%、16%、14%、12%.其中,芳香烃主要来自于溶剂使用、交通工具尾气排放、工业生产和燃料挥发,其分担率分别为35%、26%、22%、17%.烯烃主要来自于交通工具尾气排放和燃料挥发,其分担率为49%和40%.烷烃主要来自于交通工具尾气排放、燃料挥发和溶剂使用,其分担率分别为45%、32%、12%.模拟结果和已知源成分谱符合较好,说明PCA/APCS受体模型源解析结果可信.  相似文献   

19.
利用OBS-2200车载测试系统,分别在高峰期、平峰期和低峰期的天津市典型路段进行了车载测试,并获得了碳氢化合物(HC)、一氧化碳(CO)和氮氧化物(NOx)等车辆排放的污染物的逐秒数据.结果显示在这3个时段内,车辆的加速度大都集中在-1.5~1.5m/s2,速度大都集中在0~70km/h,并且HC、CO和NOx的最高排放率为0.0673、0.706和0.0178g/s,都集中在高速(速度(v)>30km/h, 加速度(a)>0.5m/s2)工况范围内.通过拟合发现,HC、CO和NOx的排放率与比功率(Vehicle Specific Power,简称VSP)之间的拟合决定系数分别为0.71、0.86和0.85,相关性较高,说明VSP可以作为评价车辆排放率的一个重要参考性指标.  相似文献   

20.
北京市BTEX的污染现状及变化规律分析   总被引:5,自引:1,他引:4  
孙杰  王跃思  吴方堃 《环境科学》2011,32(12):3531-3536
2008年10~2009年10月,利用前级浓缩-气相色谱/质谱法,对北京市大气中5种苯系物BTEX(苯、甲苯、乙苯、间、对二甲苯、邻二甲苯)的组成及浓度变化进行了采样分析研究.结果表明,北京市大气BTEX平均浓度为13.9~44.0μg.cm-3,其中甲苯的含量最高,苯次之,邻二甲苯含量最低,与国外城市和地区相比北京大气中BTEX浓度较低,研究发现北京市BTEX主要来自机动车排放,城市燃煤和工业溶剂挥发也是BTEX的重要来源.一年的观测结果表明,BTEX春、夏季节浓度较高,秋季浓度较低,季节性排放源的变化是BTEX季节变化的主要原因,同时也不能忽视温度和大风等天气因素对BTEX浓度的影响.受交通排放和边界层高度的影响,BTEX类化合物的日变化形式为夜晚高于白天,呈双峰形,日最低浓度出现在14:00前后.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号