首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greenhouse gas(GHG) emissions from oil and gas systems are an important component of the GHG emission inventory. To assess the carbon emissions from oilfield-produced water under atmospheric conditions correctly, in situ detection and simulation experiments were developed to study the natural release of GHG into the atmosphere in the Shengli Oilfield,the second largest oilfield in China. The results showed that methane(CH4) and carbon dioxide(CO2) were the primary gases released naturally from the oilfield-produced water.The atmospheric temperature and release time played important roles in determining the CH4 and CO2emissions under atmospheric conditions. Higher temperatures enhanced the carbon emissions. The emissions of both CH4 and CO2from oilfield-produced water were highest at 27°C and lowest at 3°C. The bulk of CH4 and CO2was released from the oilfield-produced water during the first release period, 0–2 hr, for each temperature, with a maximum average emission rate of 0.415 g CH4/(m3·hr) and 3.934 g CO2/(m3·hr), respectively. Then the carbon emissions at other time periods gradually decreased with the extension of time. The higher solubility of CO2 in water than CH4 results in a higher emission rate of CH4 than CO2over the same release duration. The simulation proved that oilfield-produced water is one of the potential emission sources that should be given great attention in oil and gas systems.  相似文献   

2.
Tertiary denitrification is an effective method for nitrogen removal from wastewater. A pilot-scale biofilter packed with suspended carriers was operated for tertiary denitrification with ethanol as the organic carbon source. Long-term performance, biokinetics of denitrification and biofilm growth were evaluated under filtration velocities of 6, 10 and 14 m/hr. The pilot-scale biofilter removed nitrate from the secondary effluent effectively, and the nitrate nitrogen (NO3-N) removal percentage was 82%, 78% and 55% at the filtration velocities of 6, 10 and 14 m/hr, respectively. At the filtration velocities of 6 and 10 m/hr, the nitrate removal loading rate increased with increasing influent nitrate loading rates, while at the filtration velocity of 14 m/hr, the removal loading rate and the influent loading rate were uncorrelated. During denitrification, the ratio of consumed chemical oxygen demand to removed NO3-N was 3.99–4.52 mg/mg. Under the filtration velocities of 6, 10 and 14 m/hr, the maximum denitrification rate was 3.12, 4.86 and 4.42 g N/(m2·day), the half-saturation constant was 2.61, 1.05 and 1.17 mg/L, and the half-order coefficient was 0.22, 0.32 and 0.24 (mg/L)1/2/min, respectively. The biofilm biomass increased with increasing filtration velocity and was 2845, 5124 and 7324 mg VSS/m2 at filtration velocities of 6, 10 and 14 m/hr, respectively. The highest biofilm density was 44 mg/cm3 at the filtration velocity of 14 m/hr. Due to the low influent loading rate, biofilm biomass and thickness were lowest at the filtration velocity of 6 m/hr.  相似文献   

3.
Surface water methane (CH4) and nitrous oxide (N2O) concentrations and fluxes were investigated in two subtropical coastal embayments (Bramble Bay and Deception Bay, which are part of the greater Moreton Bay, Australia). Measurements were done at 23 stations in seven campaigns covering different seasons during 2010–2012. Water–air fluxes were estimated using the Thin Boundary Layer approach with a combination of wind and currents-based models for the estimation of the gas transfer velocities. The two bays were strong sources of both CH4 and N2O with no significant differences in the degree of saturation of both gases between them during all measurement campaigns. Both CH4 and N2O concentrations had strong temporal but minimal spatial variability in both bays. During the seven seasons, CH4 varied between 500% and 4000% saturation while N2O varied between 128 and 255% in the two bays. Average seasonal CH4 fluxes for the two bays varied between 0.5 ± 0.2 and 6.0 ± 1.5 mg CH4/(m2·day) while N2O varied between 0.4 ± 0.1 and 1.6 ± 0.6 mg N2O/(m2·day). Weighted emissions (t CO2-e) were 63%–90% N2O dominated implying that a reduction in N2O inputs and/or nitrogen availability in the bays may significantly reduce the bays' greenhouse gas (GHG) budget. Emissions data for tropical and subtropical systems is still scarce. This work found subtropical bays to be significant aquatic sources of both CH4 and N2O and puts the estimated fluxes into the global context with measurements done from other climatic regions.  相似文献   

4.
Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean CO_2flux in the DP was(0.75±0.12)mmol/(m~2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m~2·hr)(p0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO_2in winter.Mean CH_4and N_2O emissions were significantly higher in the DP compared to those in the UDP(CH_4=(0.66±0.31)vs.(0.07±0.06)mmol/(m~2·hr)and N_2O=(19.54±2.08)vs.(0.01±0.04)μmol/(m~2·hr))(p0.01),suggesting that drainage would also significantly enhance CH_4and N_2O emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p0.01),with values of739.18 and 26.46 mg CO_2-eq/(m~2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.  相似文献   

5.
Basic-oxygen furnace slag(BOF-slag) contains 35%CaO,a potential component for CO_2sequestration.In this study,slag-water-CO_2 reaction experiments were conducted with the longest reaction duration extending to 96 hr under high CO_2 pressures of 100-300 kg/cm2 to optimize BOF-slag carbonation conditions,to address carbonation mechanisms,and to evaluate the extents of V and Cr release from slag carbonation.The slag carbonation degree generally reached the maximum values after 24 hr slag-water-CO_2 reaction and was controlled by slag particle size and reaction temperature.The maximum carbonation degree of 71%was produced from the experiment using fine slag of0.5 mm under 100℃and a CO_2 pressure of 250 kg/cm~2 with a water/slag ratio of 5.Vanadium release from the slag to water was significantly enhanced(generally 2 orders) by slag carbonation.In contrast,slag carbonation did not promote chromium release until the reaction duration exceeded 24 hr.However,the water chromium content was generally at least an order lower than the vanadium concentration,which decreased when the reaction duration exceeded 24 hr.Therefore,long reaction durations of 48-96 hr are proposed to reduce environmental impacts while keeping high carbonation degrees.Mineral textures and water compositions indicated that Mg-wustite,in addition to CaO-containing minerals,can also be carbonated.Consequently,the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO_2 sequestration capability of the BOF-slag by~20%.Therefore,the BOF-slag is a better CO_2 storage medium than that previously recognized.  相似文献   

6.
To reveal the basic characteristics and controlling factors of water quality change in the project Wenyu to Chaobai reclaimed water diversion, the water quality in the study area was monitored for one year at seven monitoring sites. Inverse geochemical models of the statistical groups were developed using PHREEQC to elucidate the hydrochemistry characteristics of reclaimed water and the factors. The monitoring results indicated that nitrogen and phosphorus contents were significantly reduced along the river mainly caused by seasonal and location variation. The pH ranged from 7.44 to 9.81. Photosynthesis of algae and denitrification in anaerobic microenvironment ultimately led to a sudden p H increase after the Jian River and the Chaobai River confluence. Mg~(2+)and SO_4~(2-) levels dropped obviously in the summer and increased in winter seasons after intersection. Na+and Cl-are relatively stable, and marked drop in the concentration only after the two rivers meet. And there is a decrease of Ca~(2+) and HCO~(3-) and increase in CO_3~(2-) during monitoring period. As a whole, the primary ions and nutrient components, including nitrogen and phosphorus, had high levels in winter. Algae's photosynthesis and respiration were observed to have an impact on the river water quality; there was precipitation–dissolution of minerals and denitrification from upstream to downstream. Inverse geochemical PHREEQC modeling confirmed that there was precipitation of aragonite or calcite, and gypsum or anhydrite in summer, and dissolution in winter; as well as precipitation of dolomite in winter, and cationic exchange and denitrification along the river.  相似文献   

7.
Photodegradation (PD) of methylmercury (MMHg) is a key process of mercury (Hg) cycling in water systems, maintaining MMHg at a low level in water systems. However, we possess little knowledge of this important process in the Jialing River of Chongqing, China. In situ incubation experiments were thus performed to measure temporal patterns and influencing factors of MMHg PD in this river. The results showed that MMHg underwent a net demethylation process under solar radiation in the water column, which predominantly occurred in surface waters. For surface water, the highest PD rate constants were observed in spring (12 × 10− 3 ± 1.5 × 10− 3 m2/E), followed by summer (9.0 × 10− 3 ± 1.2 × 10− 3 m2/E), autumn (1.4 × 10− 3 ± 0.12 × 10− 3 m2/E), and winter (0.78 × 10− 3 ± 0.11 × 10− 3 m2/E). UV-A radiation (320–400 nm), UV-B radiation (280–320 nm), and photosynthetically active radiation (PAR, 400–700 nm) accounted for 43%–64%, 14%–31%, and 16%–45% of MMHg PD, respectively. PD rate constants varied substantially with the treatments that filtered the river water and amended it with chemicals (i.e., Cl, NO3, dissolved organic matter (DOM), Fe(III)), which reveals that suspended particulate matter and water components are important factors in affecting the PD process. For the entire water column, the PD rate constant determined for each wavelength range decreased rapidly with water depth. UV-A, UV-B, and PAR contributed 27%–46%, 6.2%–12%, and 42%–65% to the PD process, respectively. PD flux was estimated to be 4.7 μg/(m2·year) in the study site. Our results are very important to understand the cycling characteristics of MMHg in the Jialing River of Chongqing, China.  相似文献   

8.
Difusive carbon dioxide(CO2) emissions from the water surface of the Three Gorges Reservoir, currently the largest hydroelectric reservoir in the world, were measured using floating static chambers over the course of a yearlong survey. The results showed that the average annual CO2 flux was(163.3 ± 117.4) mg CO2/(m2·hr) at the reservoir surface, which was larger than the CO2 flux in most boreal and temperate reservoirs but lower than that in tropical reservoirs. Significant spatial variations in CO2 flux were observed at four measured sites, with the largest flux measured at Wushan(221.9 mg CO2/(m2·hr)) and the smallest flux measured at Zigui(88.6 mg CO2/(m2·hr)); these diferences were probably related to the average water velocities at diferent sites. Seasonal variations in CO2 flux were also observed at four sites, starting to increase in January, continuously rising until peaking in the summer(June-August) and gradually decreasing thereafter. Seasonal variations in CO2 flux could reflect seasonal dynamics in pH, water velocity,and temperature. Since the spatial and temporal variations in CO2 flux were significant and dependent on multiple physical, chemical,and hydrological factors, it is suggested that long-term measurements should be made on a large spatial scale to assess the climatic influence of hydropower in China, as well as the rest of the world.  相似文献   

9.
An OH radical measurement instrument based on Fluorescence Assay by Gas Expansion(FAGE)has been developed in our laboratory.Ambient air is introduced into a low-pressure fluorescence cell through a pinhole aperture and irradiated by a dye laser at a high repetition rate of 8.5 k Hz.The OH radical is both excited and detected at 308 nm using A-X(0,0)band.To satisfy the high efficiency needs of fluorescence collection and detection,a 4-lens optical system and a self-designed gated photomultiplier(PMT)is used,and gating is actualized by switching the voltage applied on the PMT dynodes.A micro channel photomultiplier(MCP)is also prepared for fluorescence detection.Then the weak signal is accumulated by a photon counter in a specific timing.The OH radical excitation spectrum range in the wavelength of 307.82–308.2 nm is detected and the excited line for OH detection is determined to be Q_1(2)line.The calibration of the FAGE system is researched by using simultaneous photolysis of H_2O and O_2.The minimum detection limit of the instrument using gated PMT is determined to be 9.4×10~5molecules/cm~3,and the sensitivity is 9.5×10~(-7)cps/(OH·cm~(-3)),with a signal-to-noise ratio of 2 and an integration time of 60 sec,while OH detection limit and the detection sensitivity using MCP is calculated to be 1.6×10~5molecules/cm~3and 2.3×10~(-6)cps/(OH·cm~(-3)).The laboratory OH radical measurement is carried out and results show that the proposed system can be used for atmospheric OH radical measurement.  相似文献   

10.
We have developed a new nanofilter using a carbon nanotube-silver composite material that is capable of efficiently removing waterborne viruses and bacteria.The nanofilter was subjected to plasma surface treatment to enhance its flow rate,which was improved by approximately 62%.Nanoscale pores were obtained by fabricating a carbon nanotube network and using nanoparticle fixation technology for the removal of viruses.The pore size of the nanofilter was approximately 38 nm and the measured flow rate ranged from 21.0 to 97.2 L/(min·m~2)under a pressure of 1–6 kgf/cm~2 when the amount of loaded carbon nanotube-silver composite was 1.0 mg/cm~2.The nanofilter was tested against Polio-,Noro-,and Coxsackie viruses using a sensitive real-time polymerase chain reaction assay to detect the presence of viral particles within the outflow.No trace of viruses was found to flow through the nanofilter with carbon nanotube-silver composite loaded above 0.8 mg/cm~2.Moreover,the surface of the filter has antibacterial properties to prevent bacterial clogging due to the presence of 20-nm silver nanoparticles,which were synthesized on the carbon nanotube surface.  相似文献   

11.
The regulatory effects of environmental factors on denitrification were studied in the sediments of Meiliang Bay, Taihu Lake, in a monthly sampling campaign over a one-year period. Denitrification rates were measured in slurries of field samples and enrichment experiments using the acetylene inhibition technique. Sediment denitrification rates in inner bay and outer bay ranged from 2.8 to 51.5 nmol N2/(g dw (dry weight)·hr) and from 1.5 to 81.1 nmol N2/(g dw·hr), respectively. Sediment denitrification rates were greatest in the spring and lowest in the summer and early autumn, due primarily to seasonal differences in nitrate concentration and water temperature. For each site, positive and linear relationships were regularly observed between denitrification rate and water columnn itrate concentration. Of various environmental factors on denitrification that we assessed, nitrate was determined to be the key factor limiting denitrification rates in the sediments of Meiliang Bay. In addition, at the two sites denitrification rates were also regulated by temperature. The addition of organic substrates had no significant effect on denitrification rate, indicating that sediment denitrification was not limited by organic carbon availability in the sediments. Nitrate in the water column was depleted during summer and early autumn, and this suppressed effective removal of nitrogen from Taihu Lake by denitrification.  相似文献   

12.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

13.
This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems(CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100 g BOD5/(m2·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus(P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10 g P/(m2·day) based on the performance results obtained within the first16 months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance.  相似文献   

14.
Ozone (O3) concentration and flux (Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3 exposure-response models. The results showed that: (1) During the growing season (7 March to 7 June, 2012), the minimum (16.1 ppbV) and maximum (53.3 ppbV) mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppbV, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature. (2) The mean diurnal variation of deposition velocity (Vd) can be divided into four phases, and the maximum occurred at noon (12:00). Averaged Vd during daytime (6:00–18:00) and nighttime (18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured Vd was about 1.5 cm/sec. The magnitude of Vd was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity. (3) The maximum mean Fo appeared at 14:00, and the maximum measured Fo was − 33.5 nmol/(m2·sec). Averaged Fo during daytime and nighttime were − 6.9 and − 1.5 nmol/(m2·sec), respectively. (4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average (5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions.  相似文献   

15.
Particles from ambient air and combustion sources including vehicle emission, coal combustion and biomass burning were collected and chemically pretreated with the purpose of obtaining isolated BC (black carbon) samples. TEM (transmission electron microscopy) results indicate that BC from combustion sources shows various patterns, and airborne BC appears spherical and about 50 nm in diameter with a homogeneous surface and turbostratic structure. The BET (Barrett–Emmett–Teller) results suggest that the surface areas of these BC particles fall in the range of 3–23 m2/g, with a total pore volume of 0.03–0.05 cm3/g and a mean pore diameter of 7–53 nm. The nitrogen adsorption–desorption isotherms are indicative of the accumulation mode and uniform pore size. O2-TPO (temperature programmed oxidation) profiles suggest that the airborne BC oxidation could be classified as the oxidation of amorphous carbon, which falls in the range of 406–490°C with peaks at 418, 423 and 475°C, respectively. Generally, the BC characteristics and source analysis suggest that airborne BC most likely comes from diesel vehicle emission at this site.  相似文献   

16.
Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100 mg/L of indole within 24 hr. It still harbored relatively high indole degradation capacity within pH 4–9 and temperature 25°C–35°C. Experiments also showed that some heavy metals such as Mn2 +, Pb2 + and Co2 + did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography–mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.  相似文献   

17.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   

18.
Considerable variations may exist in CH4 emissions from the Three Gorges Reservoir.  相似文献   

19.
Sulfide dioxide(SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone(SZ) and immobilized zone(IZ), was applied to treat SO2 for 6 months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85%removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80 g/(m3·hr) for the SZ and 1.50 g/(m3· hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16 S r DNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones.The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria.This work presents a potential biological treatment method for waste gases containing hydrophilic compounds.  相似文献   

20.
Effect of aeration rate on composting of penicillin mycelial dreg   总被引:2,自引:0,他引:2  
Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90 L/(min·kg) organic matter(OM) were examined. The principal physicochemical parameters were monitored during the 32 day composting period. Results showed that the higher aeration rate of 0.90 L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation;but the lower aeration rate of 0.15 L/(min·kg) did induce an accumulation of NH+4-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures ≥ 55°C, the maximum NO-3-N content and seed germination, and the minimum C/N ratio were obtained with 0.50 L/(min·kg) OM. Therefore, aeration rates of0.50 L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号