首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2006—2012年广东省机动车尾气排放特征及变化规律   总被引:1,自引:0,他引:1       下载免费PDF全文
利用广东省年鉴及实地调查资料,基于COPERT Ⅳ模型计算并分析了2006─2012年广东省珠三角和非珠三角地区的机动车尾气排放清单. 结果表明:研究地区2006─2012年机动车保有量上升,国Ⅲ、国Ⅳ车辆所占比例提高,其中珠三角地区优化程度大于非珠三角地区;2006─2012年2个地区污染物(CO、VOC、NOx、PM2.5)排放因子均有降低,降幅在24.54%~57.89%之间. 机动车污染物排放量上升趋势及贡献特征地区性差异明显,2006─2012年非珠三角地区CO、VOC排放量分别上升了37.20%、26.93%,增幅高于珠三角地区,而珠三角地区2012年的NOx、PM2.5排放量增幅(分别为21.65%、14.60%)高于非珠三角地区. 轻型客车是2个地区CO和VOC的主要贡献车型,贡献率均达46.96%以上,并且处于上升状态,但珠三角地区增幅小于非珠三角地区;重型客车和重型货车是2个地区NOx、PM2.5的主要来源,贡献率均在40.78%以上.   相似文献   

2.
基于本地化的综合移动源排放模型(Motor Vehicle Emission Simulator,MOVES)模型模拟典型机动车的CO2排放因子,并建立排放因子与速度变化关系的评估方程,结合各省路网平均速度与区域电网排放因子核算中国31个省份分车型的CO2排放因子.同时,综合考虑载客汽车的载客量和客座率,载货汽车的载重量和载货率,建立各省单位客运,货运周转量的机动车CO2排放因子库.结果表明,各类机动车的平均CO2排放因子分别为:柴油公交车0.880kgCO2/km,重型货车0.877kgCO2/km,电动公交车0.676kgCO2/km,中型货车0.508kgCO2/km,轻型货车0.374kgCO2/km,柴油小客车0.227kgCO2/km,微型货车0.216kgCO2/km,汽油小客车0.203kgCO2/km,电动小客车0.108kgCO2/km,摩托车0.062kgCO2/km.车辆满载时,柴油公交车和电动公交车的人均CO2排放量比汽油小客车分别降低了63%和73%,电动小客车的人均CO2排放量较汽油和柴油小客车分别下降了46%和51%.较高的机动车保有量,频繁的道路拥堵导致上海,北京和重庆等市的机动车CO2排放因子相对较高.倡导公共交通,提高客座率,降低私家车使用频率,推广纯电动汽车并通过减少道路拥堵以提高车速是降低道路交通CO2排放量的有效途径.  相似文献   

3.
机动车排放污染物已经成为大气污染的重要来源.基于福建省高速公路交通流量数据,采用自下而上的计算方法建立了2020年1—7月福建省高速公路机动车高分辨率污染物排放清单.结果表明,受疫情影响,福建省高速公路月均车流量和污染物排放量呈先下降后上升的变化趋势,4月污染物排放量达到最低,5月污染物排放量又迅速恢复到疫情前的排放水平,其中,疫情中期污染物CO、HC、NOx、PM2.5和PM10排放较疫情后期分别减少了90.68%、89.06%、92.58%、89.58%和89.63%.在整个研究期内,不同城市高速公路机动车污染物排放的分担率有所不同,泉州、福州和漳州的高速公路机动车排放分担率较高;从车型来看,小型客车和轻型货车是CO和HC的主要贡献车型,NOx和PM主要来自重型货车和轻型货车;从燃料类型来看,汽油车是CO和HC的主要贡献源,柴油车则对NOx和PM贡献突出;从排放标准来看,国三和国四车对各项污染物的贡献率最大.各项污染物空间分布一致,排放高值区位于东部沿海地区路段,西部内陆的...  相似文献   

4.
基于MOVES模型对参数进行本地化修正,计算机动车排放的气态污染物排放因子,以2012年为基准年建立关中城市群的道路移动源常规和非常规气态污染物的排放总量清单,并得到不同车型、不同城市区域的机动车污染物排放分担率.结果显示,关中城市群的道路移动源常规气态污染物中一氧化碳(CO)的排放量为45.40万t,氮氧化物(NOx)为8.190万t、二氧化硫(SO2)为0.420万t、氨(NH3)为0.10万t;非常规气态污染物中非甲烷碳氢化合物(NMHC)的排放量为4.168万t,甲醛(HCHO)为0.057万t、乙醛(CH3CHO)为0.027万t、丙烯醛(C3H4O)为0.004万t、1,3-丁二烯(C4H6)为0.012万t、苯为0.090万t、甲烷(CH4)为0.123万t、氧化亚氮(N2O)为0.004万t.此外,各城市按照排放分担率从高至低依次为西安(50%)、渭南(23%)、咸阳(含杨凌)(12%)、宝鸡(10%)和铜川(5%).本研究还发现污染物排放分担率在不同车型中差异显著,其中NOx排放以重型货车(33.85%)和中型货车(21.21%)为主;SO2、醛类物质在重型货车中排放分担率分别为31.31%和30%;而CO、NMHC、C4H6、苯和CH4的排放主要来自小客车(分别为32.86%、17.55%、26.64%、26.45%和38.85%)和摩托车(分别为32.64%、55.21%、43.29%、49.04%和30.97%);NH3的小客车和重型货车排放分担率分别为49.5%和31.31%.  相似文献   

5.
为准确掌握荆州开发区大气污染物排放状况,该研究采用排放因子法,基于资料收集与实地调查结合的方式获取活动水平、文献调研选取排放系数,结合ArcGIS平台,建立了荆州开发区2019年1 km×1 km 10类排放源9种大气污染物排放清单。结果表明:开发区SO2、NOx、CO、VOCs、NH3、PM10、PM2.5、BC和OC的排放量分别为850.4、2 407.1、4 584.0、4 848.3、107.7、8 602.1、4 485.3、57.8和159.6 t。移动源是NOx的主要来源,占NOx总排放量的43.8%。固定燃烧源是CO的主要来源,占CO总排放量的81.5%。工艺过程源是SO2、VOCs、PM10、PM2.5和OC的主要来源,分别占SO2、VOCs、PM10、PM2.5和OC总排放量的50.9...  相似文献   

6.
汽车污染已成为中国空气污染的重要来源,而重型柴油货车是汽车大气污染排放的主要贡献者。为揭示重型柴油货车的排放特征,基于高原地区云南省昆明市重型柴油货车GPS点数据,用Python语言提取重型柴油货车在各点轨迹段的平均速度、行驶里程等参数,采用机动车排放模型MOVES,模拟计算研究区域内HC、CO、NOx、PM2.5污染物排放量,并通过ArcGIS进一步分析其时空分布特征。结果表明:2021年1月3日昆明市研究区域内重型柴油货车HC、CO、NOx、PM2.5的排放量分别为11.7423,39.6386,102.2600,0.9192 kg;时间维度,重型柴油货车在2:00和22:00有明显的排放高峰,受路权及运输行业工作时间的影响;空间维度,排放的分布格局呈明显的空间异质性,受政策驱动的影响且与空间位置的布置密切相关,排放主要分布在汕昆高速、昆石高速及支路、立交交叉口处;区域内重型柴油货车小时平均速度、交通量与其小时排放量有密切关系。因此,可以针对重型柴油货车排放较高的时段和地区,采取必要的治理手段,...  相似文献   

7.
基于国家干线公路交通量信息,运用GIS的路网线性参考系统,计算珠三角地区夏季NOx和VOCs排放量,使用最大增量反应活性(MIR)和经验公式,分别估算VOCs和NOx的O3生成及其强度的空间分布特征.结果表明,夏季VOCs的排放量占比总体上与各类型车辆数占比一致,而汽油车的NOx排放量占比与车辆数差异较大;VOCs排放的分布与NOx基本相似,广州市是NOx和VOCs排放量最高的城市,珠海、中山和江门3个城市的排放量较小;NOx的O3生成总量与生成能力成反比,所有车型中烯烃和芳香烃对O3生成贡献率都是最大的,而排放量较大的烷烃生成O3量最低;路网密度大的广州市、深圳市,汽车排放的NOx和VOCs量相对较高,其产生的O3浓度也较高,对于路网密度较小的城市(如珠海市),其O3污染主要以交通干线为中心,向外扩散,O3生成量较小.  相似文献   

8.
机动车排放控制标准对污染物排放因子的影响   总被引:12,自引:4,他引:8  
基于我国机动车排放控制标准,利用适应性调整后的IVE模型及改进的LEAP模型,结合机动车燃油经济性,建立了研究区域2004—2030年机动车CO,VOCs,NOx,PM10和CO2的动态排放因子.结果表明,国Ⅰ和国Ⅱ规定的机动车排放控制标准(除摩托车外)对降低各类机动车型污染物排放因子作用不大; 而国Ⅳ标准将自2010年起执行,只有执行该标准才能显著降低所有汽油和柴油车型的污染物排放因子. 研究结果同时显示,2010年后机动车污染物的排放因子将继续降低.   相似文献   

9.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   

10.
邯郸市大气污染源排放清单建立及总量校验   总被引:1,自引:0,他引:1       下载免费PDF全文
邯郸作为"2+26"城市主要的重工业城市之一,位于京津冀南北传输通道的核心位置,在京津冀地区大气污染协同调控中处于重要地位.为改善当地空气质量,以邯郸市为研究对象,基于拉网式调查获取详细活动水平数据,结合相关排放因子,得到2016年邯郸市大气污染源排放清单;采用WRF-CMAQ(气象-空气质量)数值模型,模拟了2016年典型季节代表月(1月、4月、7月、10月)的空气质量,验证了数值模型的准确性;最后基于总量校验方法,反向估算了邯郸市典型污染物的排放总量,对初始大气污染源排放清单进行校验.结果表明:①2016年邯郸市SO2、NOx、TSP、PM10、PM2.5、CO、VOCs、NH3的总排放量分别为78 533、183 126、497 466、258 940、124 637、3 735 355、200 309、187 299 t.②工业源是SO2、NOx、PM2.5、CO和VOCs的主要排放源,分别占总排放量的74.5%、54.5%、30.6%、76.7%和28.1%;无组织扬尘源对TSP、PM10、PM2.5的贡献较大,分别占总排放量的58.5%、43.6%、30.3%;NH3的主要排放源为农畜氨及人体和其他氨,二者排放的NH3占总排放量的96.9%.③总量模型估算得到邯郸市PM2.5、SO2、NO2年排放量分别为152 739、79 405、206 549 t;对比分析校验前、后典型污染物排放发现,校验前的大气污染源排放清单可能低估了PM2.5和NOx的排放量.研究显示,邯郸市污染物排放量较大,工业源为主要排放源,建议相关部门加强对工业源的管控力度.   相似文献   

11.
轻型汽油车VOCs排放特征和排放因子台架测试研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究轻型汽油车尾气中VOCs的排放特征和排放因子,按照《轻型汽车污染物排放限值及测量方法》(中国Ⅲ、Ⅳ阶段)中要求,采用底盘测功机对国内现有不同品牌轻型汽车进行台架试验,并利用3级冷阱预浓缩GC-MS方法对尾气样品中VOCs物种进行定量分析.结果表明,尾气样品中共有68种VOCs被定量检出,其中芳香烃种类最多,占38.7%,烷烃占29.8%,烯烃(包含炔烃)占27.1%.不同品牌轻型车源排放谱特征基本吻合.轻型汽车的总VOCs排放因子为0.01~0.46g/km,前3位物种分别为乙烯、甲苯和苯.  相似文献   

12.
建立了泉州市"十二五"期间机动车排放清单,获得了不同机动车排放贡献率.结果表明:摩托车和小型客车占总机动车保有量的比例最大,成为泉州市机动车排放的主要来源;污染物排放量排序:CO>NOx>HC>PM;甲醛>苯>乙醛>1,3-丁二烯>氨;CO2>N2O>CH2;不同车型对机动车污染物的排放贡献率有显著不同,小型客车对于CO和HC排放贡献最大,NOx、PM的主要排放源为重型货车;摩托车、小型客车、中型货车对有毒有害物的贡献率最大;小型客车对温室气体的贡献率最大.  相似文献   

13.
为掌握轻型汽油车NH3排放实际状况,以一辆配备三元催化转化器(three-way catalytic converter,TWC)的国Ⅵ轻型汽油车为研究对象,分别在全球轻型汽车驾驶工况(worldwide light-duty test cycle,WLTC)、中国轻型汽车行驶工况(China light-duty vehicle test cycle,CLTC)和美国联邦测试规程(federal test procedure,FTP-75)下进行NH3排放测试,分析WLTC工况下的瞬时NH3排放特征,以及不同环境温度(?7、0、23、35 ℃)对NH3排放的影响,并对比3种测试工况下的NH3排放因子. 结果表明:①在WLTC工况下,车辆冷起动前50 s未检测到NH3,NH3排放主要集中在低速段和中速段(前900 s),在高速段和超高速段,仅有极少量的NH3生成. 轻型汽油车在低速(v<40 km/h)的加速区间内,NH3排放量较高. ②随着环境温度的升高,NH3排放因子呈下降趋势,35 ℃时略微有所上升. 其中,?7 ℃下低速段的NH3排放因子分别是0、23和35 ℃下的1.4~2.2倍;在WLTC工况下,各种测试环境温度下车辆的NH3排放因子均表现为低速段>中速段>高速段>超高速段;在3种工况下,轻型汽油车的NH3排放因子差异较大. 其中,测试车辆在WLTC工况下的排放因子最小. 研究显示,在低温(?7 ℃)环境下轻型汽油车NH3的排放量相对较高.   相似文献   

14.
王鸿宇  黄成  胡磬遥  李莉  陈勇航  徐健 《环境科学》2017,38(6):2294-2300
选取25辆国2~国5标准在用轻型汽油车分别采用简易瞬态工况法(VMAS)与定容全流稀释采样法(CVS)开展了排放实测,分析了两种方法实测的排放因子相关性.结果表明,轻型汽油车排放水平总体随排放标准提升而呈下降趋势,国2和国3标准车辆中存在一定的高排放现象,国4及以上标准车型排放相对较低.VMAS和CVS方法的排放相关性随标准提升而显著下降,对国4及以上标准车辆的CO和HC+NO_x排放的相对偏差分别达到197%和177%.对较高排放车辆,两种方法检测结果的相关系数达到0.75~0.85;对较低排放车辆,相关系数仅为0.46左右,若将在用车排放标准进一步收严,采用VMAS检测的误判率将显著上升.随着我国机动车排放水平的不断下降,总体来看,VMAS检测对高排放标准车辆的适用性相对较差,有必要在用车排放检测方法方面开展更为深入的研究.  相似文献   

15.
通过实际测试得到轻型汽油车蒸发排放热浸和昼间排放因子,结合北京市轻型汽油车保有量和车辆使用情况,基于MOVES模型评估北京市轻型汽油车蒸发排放总量.结果表明,国五和国六标准车辆的平均蒸发排放因子分为1.03,0.37g/test;轻型汽油车蒸发排放随行驶里程增加未出现明显劣化趋势;北京市轻型汽油车蒸发排放总量为8299...  相似文献   

16.
于鸣媛  王谦  付明亮  戈畅  谢锋  曹芳  章炎麟 《环境科学》2023,44(7):3771-3778
机动车尾气是大气碳质气溶胶的重要人为来源,其排放因子与稳定碳同位素组成是重要的基础数据.选取多辆不同类型在用机动车,进行多种工况、冷/热条件下启动的台架试验,收集各测试阶段尾气分析其碳质组分含量与稳定碳同位素比值,并探讨其影响因素.结果表明,总碳排放因子大小为:重型柴油车>轻型柴油车>轻型汽油车,轻型天然气车虽然在低速与中速阶段排放因子极低,但高速行驶阶段可达到重型柴油车的排放水平.各型车冷启动的排放因子均高于热启动,NEDC工况的排放因子整体低于WLTC工况,应与其测试车速有关.汽油车和天然气车各测试阶段排放有机碳(OC)均远高于元素碳(EC),柴油车OC与EC排放因子相近,各类车辆OC/EC都随测试车速的提高而上升.稳定碳同位素EC重于OC,同位素比值大小关系均呈现:汽油车<天然气车<轻型柴油车<重型柴油车,现有源解析的稳定碳同位素源谱较难反映汽油车与天然气车特征.在排放治理与源解析工作中,应注意替代燃料的使用与机动车老化过程所造成的排放因子与同位素特征值的变化影响.  相似文献   

17.
为建立典型城市机动车驾驶模式并量化其尾气排放,研究选取成都市内26辆满足国Ⅴ排放标准(GB 18352.5-2013《轻型汽车污染物排放限值及测量方法(中国第五阶段)》)的轻型汽油车,利用便携式尾气测量系统测量其现实条件下的行驶工况及尾气排放,并根据实际情况结合分类回归树方法构建本地化的驾驶模式并分析各模式的尾气排放。结果表明:划分的加速、减速、匀速、怠速、停走5种驾驶模式,可以反映车辆行驶过程中尾气排放和油耗特征。不同驾驶模式间的尾气排放有显著差异。通常情况下,以加速最大,其次为匀速、停走、减速,以怠速最小。根据污染物不同,不同模式间的尾气排放差异可达到12倍。此外,现实条件下车辆尾气超标排放的情况严重,且存在间歇性高排放的现象。这说明构建典型城市驾驶模式并分析其模式排放特征有助于估算小尺度的机动车尾气排放清单,并为交通管理和尾气排放控制提供数据参考。  相似文献   

18.
乌鲁木齐市城区机动车大气污染物排放特征   总被引:4,自引:1,他引:3  
对乌鲁木齐市城区车辆信息(包括车流量和车辆构成、车辆控制技术水平、车辆行驶工况、车辆启动分布等)进行调研和测试,并根据IVE模型计算得到机动车污染物排放清单,获得分车型、燃料类型及启动/运行方式的机动车污染物排放分担率.结果表明:2011年乌鲁木齐市机动车CO、NO_x、HC和PM的排放量分别为20.22×104、2.60×104、1.84×104和0.44×10~4t·a~(-1),机动车污染物排放分担率差别显著,乘用车、公交车和重型货车是CO和HC主要排放源;重型货车和乘用车是NO_x的主要排放源;重型货车是PM的主要排放源.汽油车是CO和HC排放的主要来源,柴油车是NO_x和PM排放的主要来源,天然气车各类污染物排放量均较低.控制柴油重型货车是消减机动车污染物排放的重要方式.  相似文献   

19.
珠江三角洲机动车挥发性有机物排放化学成分谱研究   总被引:25,自引:5,他引:20  
根据珠三角地区机动车挥发性有机物排放(VOCs)贡献特征,选取在用轻型汽油车、轻型柴油车、液化石油气(LPG)出租车和摩托车,采用底盘测功机及实际道路测试,获取了以上车型尾气排放的VOCs化学成分(59种非甲烷碳氢化合物)特征谱.轻型汽油车以及摩托车的尾气组成中芳香烃含量最高,其次为烷烃;苯系物、异戊烷以及乙烯占轻型汽油车尾气VOCs组成的54.5%;苯系物、异戊烷以及乙炔占摩托车尾气组成的54.6%.轻型柴油车的尾气组成中烷烃比例最高,其次是芳香烃和烯炔烃.除了苯和甲苯,正十一烷、正十二烷、正癸烷、乙烯、丙烯、1-丁烯亦在柴油车尾气中占有重要比例(41.2%).LPG出租车尾气组成以丙烷、正丁烷、异丁烷为主,并伴有较高比例的1,2,4-三甲基苯、1,2,3-三甲基苯和甲苯.与类似研究比较结果表明:由于在油品、排放标准及采样与分析方法等方面的差异,机动车排放源成分谱相关研究结果仍存在一定的差异性,建议对机动车成分谱研究在尾气采样与分析方法等方面进行规范化和标准化.  相似文献   

20.
杭州市区机动车污染物排放特征及分担率   总被引:1,自引:0,他引:1       下载免费PDF全文
选取杭州市区绕城高速、快速路、主干道和民用支路4种典型道路进行工况测试,建立了2010年机动车CO、HC、NOx和PM10排放清单,获得了分车型、燃料类型、排放标准以及道路类型的机动车污染物排放分担率.结果表明,杭州市机动车的污染物排放分担率差别显著,乘用车、出租车和公交车是CO和HC排放的主要来源,重型货车和公交车是NOx和PM10排放的主要来源,且乘用车的NOx排放分担率也较大;柴油车的NOx和PM10的排放分担率远大于其保有量的贡献率,是其排放的主要来源,汽油车是CO和HC排放的主要来源;占保有量30%的国0和国I车辆,对CO、HC、NOx和PM10排放分担率分别为67%、69%、58%和82%;主干道是机动车CO、HC和NOx排放的主要来源,其排放分担率分别为66%、65%和64%,民用支路是PM10排放的主要来源,分担率为55%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号