首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Humic substances are ubiquitous redox-active organic compounds of environment. In this study, experiments were conducted to determine the reduction capacity of humic acid in the man-ix of bromate and Fe(Ⅲ) solutions and the role of Fe(Ⅲ) in this redox process. The results showed that the humic acid regenerated Fe(Ⅱ) and reduced bromate abiotically. The addition of Fe(Ⅲ) could accelerate the bromate reduction rate by forming humic acid-Fe(Ⅲ) complexes. Iron species acts as electron mediator and catalyst for the bromate reduction by humic acid, in which humic acid transfers electrons to the complexed Fe(Ⅲ) to form Fe(Ⅱ), and the regenerated Fe(Ⅱ) donate the electrons to bromate. The kinetics study on bromate reduction further indicated that bromate reduction by humic acid-Fe(Ⅲ) complexes is pH dependent. The rate decreased by 2-fold with the increase in solution pH by one unit. The reduction capacity of Aldrich humic acid was observed to be lower than that of humic acid or natural organic matter of Suwanne River, indicating that such redox process is expected to occur in the environment.  相似文献   

2.
Humic substrates are a major fraction of sediment organic matters, and the sorption of hydrophobic organic chemicals by humic substrates influences their behavior and fate in sediment. In this paper, organic matters were divided into non-humic substrates and humic substrates. Non-humic substrates include acid leaching fraction, acid extracted fraction, and lipid; humic substrates were fractionated into Ca-binding-FA(fulvic acid), Ca-binding-HA (humic acid), oxide-FA, oxide-HA, and humin. To study the effect of organic fractions on sorption properties, sorption kinetic and equilibrium sorption experiments of phenanthrene and pentachlorophenol(PCP) in five sediments were carried out. The results showed that the contents of acid leaching fraction and oxide-binding-HA were the main fractions to affect the sorption rate constant, and for the sorption capacity of phenanthrene, humin was the major fraction, followed by oxide-binding-HA, oxidebinding-FA, and so on. While for PCP, the factors of influence on sorption capacity were mainly CEC, Ca-binding-FA, and Ca-binding-HA.  相似文献   

3.
Effects of algae Nitzschia hantzschiana, Fe(Ⅲ) ions, humic acid, and pH on the photochemical reduction of Hg(Ⅱ) using the irradiation of metal halide lamps (λ 365 nm, 250 W) were investigated. The photoreduction rate of Hg(Ⅱ) was found to increase with increasing concentrations of algae, Fe(Ⅲ) ions, and humic acid. Alteration of pH value affected the photoreduction of Hg(Ⅱ) in aqueous solution with or without algae. The photoreduction rate of Hg(II) decreased with increasing initial Hg(Ⅱ) concentration in aqueous solution in the presence of algae. The photochemical kinetics of initial Hg(Ⅱ) and algae concentrations on the photoreduction of Hg(Ⅱ) were studied at pH 7.0. The study on the total Hg mass balance in terms of photochemical process revealed that more than 42% of Hg(Ⅱ) from the algal suspension was reduced to volatile metallic Hg under the conditions investigated.  相似文献   

4.
Dissimilatory Fe(Ⅲ) reduction is a universal process with irreplaceable biological and environmental importance in anoxic environments. Our knowledge about Fe(Ⅲ) reduction predominantly comes from pure cultures of dissimilatory Fe(Ⅲ) reducing bacteria (DFRB). The objective of this study was to compare the effects of glucose and a selection of short organic acids (citrate, succinate, pyruvate, propionate, acetate, and formate) on Fe(Ⅲ) reduction via the anaerobic culture of three paddy soil solutions with Fe(OH)3 as the sole electron acceptor. The results showed significant differences in Fe(Ⅲ) reduction among the three paddy soil solutions and suhstrate types. Bacteria from the Sichuan paddy soil responded quickly to substrate supply and showed higher Fe(Ⅲ) reducing activity than the other two soil types. Bacteria in the Jiangxi paddy soil culture solution could not use propionate as a source of electrons for Fe(Ⅲ) reduction. Similarly, bacteria in the Jilin paddy soil culture could not use succinate effectively. Pyruvate was readily used by cultures from all three paddy soil solutions, thus indicating that there were some similarities in substrate utilization by bacteria for Fe(Ⅲ) reduction. The use of glucose and citrate as substrate for dissimilatory Fe(Ⅲ) reduction indicates important ecological implications for this type of anoxic respiration.  相似文献   

5.
Iron oxide(FeO)coated by natural organic matter(NOM)is ubiquitous.The associations of minerals with organic matter(OM)significantly changes their surface properties and reactivity,and thus affect the environmental fate of pollutants,including nutrients(e.g.,phosphorus(P)).In this study,ferrihydrite/goethite-humic acid(FH/GE–HA)complexes were prepared and their adsorption characteristics on P at various p H and ionic strength were investigated.The results indicated that the Fe O–OM complexes showed a decreased P adsorption capacity in comparison with bare Fe O.The maximum adsorption capacity(Q_(max))decreased in the order of FH(22.17 mg/g)FH-HA(5.43 mg/g)GE(4.67 mg/g)GE-HA(3.27 mg/g).After coating with HA,the amorphous FH–HA complex still showed higher P adsorption than the crystalline GE–HA complex.The decreased P adsorption observed might be attributed to changes of the Fe O surface charges caused by OM association.The dependence of P adsorption on the specific surface area of adsorbents suggests that the Fe O component in the complexes is still the main contributor for the adsorption surfaces.The P adsorptions on Fe O–HA complexes decreased with increasing initial p H or decreasing initial ionic strength.A strong dependence of P adsorption on ionic strength and p H may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the Fe O component and P.Therefore,previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils,especially in humic-rich areas.  相似文献   

6.
Arsenic(As) mobilization in soils is a fundamental step controlling its transport and fate,especially in the presence of the co-existing components. In this study, the effect of two commonly used herbicides, glyphosate(PMG) and dicamba, and two competing ions including phosphate and humic acid, on As desorption and release was investigated using batch and column experiments. The batch kinetics results showed that As desorption in the presence of competing factors conformed to the pseudo-second order kinetics at pH range of 5–9. The impact of phosphate on desorption was greatest, followed by PMG. The competitive effect of dicamba and humic acid was at the same level with electrolyte solution. In situ flow cell ATR-FTIR analysis was performed to explore the mechanism of phosphate and PMG impact on As mobilization. The results showed that PMG promoted As(Ⅲ) desorption by competiting for available adsorption sites with no change in As(Ⅲ)complexing structure. On the other hand, phophate changed As(Ⅲ) surface complexes from bidentate to monodentate structures, exhibiting the most siginficant effect on As(Ⅲ)desorption. As(Ⅴ) surface complexes remained unchanged in the presence of PMG and phosphate, implying that the competitive effect for As(Ⅴ) desorption was primarily determined by the available adsorption sites. Long-term(10 days) soil column experiments suggested that the effect of humic acid on As mobilization became pronounced from 3 days(18 PVs). The insights of this study help us understand the transport and fate of As due to herbicides application.  相似文献   

7.
The relation between EH [Se(VI)/Se(IV)] and pH of soil aqueous extract in Kaschin-Beck disease region and the effects of natural redox agents, namely humic substances, MnO2 and Fe2+, on the redox property of the system were studied. The results indicated that both humic acid and Fe2+ could enhance the reducibility of Se(VI) and MnO2, a limited oxidizability for Se(IV). Fe2+ showed a weak reducibility only at low pH value. The reducibilities of three sulfur-containing compounds for Se(VI) were in following order:thioglycollic acid > L-cysteine > sulfide  相似文献   

8.
Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environment. ROS may participate in the indirect photolysis of trace organic pollutants, therefore resulting in the changing of their environmental fates and ecological risks in natural water system. Bisphenol A (BPA), an endocrine-disrupting chemical, exits widely in natural water. The photodegradation of BPA promoted by ROS (·OH, 1O2, HO2·/O2·-) which were produced on the excitation of ubiquitous constituents (such as nitrate ion, humic substances and Fe(III)-oxalate complexes) in natural water under simulated solar radiation was investigated. Both molecular probe method and electron spin resonance (ESR) test were used for the determine the characterization of generated ROS. It was found that ·OH was photochemically produced with the presence of nitrate ion, humic substances and Fe(III)-oxalate complexes and 1O2 was produced with the presence of humic substances. The steady-state concentrations of ·OH was 1.27×10-14 mol/L in nitrate ion, and the second-order rate constant of BPA with ·OH was 1.01×1010L/( mol·s).  相似文献   

9.
The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.  相似文献   

10.
Fe–Mn binary oxide(FMBO) possesses high efficiency for As(Ⅲ) abatement based on the good adsorption affinity of iron oxide and the oxidizing capacity of Mn(Ⅳ), and the composition and structure of FMBO play important roles in this process.To compare the removal performance and determine the optimum formula for FMBO, magnetic graphene oxide(MRGO)–FMBO and MRGO–MnO_2 were synthesized with MRGO as a carrier to improve the dispersity of the adsorbents in aquifers and achieve magnetic recycling.Results indicated that MRGO–FMBO had higher As(Ⅲ) removal than that of MRGO–MnO_2,although the ratios of Fe and Mn were similar, because the binary oxide of Fe and Mn facilitated electron transfer from Mn(Ⅳ) to As(Ⅲ), while the separation of Mn and Fe on MRGO–MnO_2 restricted the process.The optimal stoichiometry x for MRGO–FMBO(Mn_xFe_(3-x)O_4) was 0.46, and an extraordinary adsorption capacity of 24.38 mg/g for As(Ⅲ) was achieved.MRGO–FMBO showed stable dispersive properties in aquifers, and exhibited excellent practicability and reusability, with a saturation magnetization of 7.6 emu/g and high conservation of magnetic properties after 5 cycles of regeneration and reuse.In addition, the presence of coexisting ions would not restrict the practical application of MRGO–FMBO in groundwater remediation.The redox reactions of As(Ⅲ) and Mn(Ⅳ) on MRGO–FMBO were also described.The deprotonated aqueous As(Ⅲ) on the surface of MRGO–FMBO transferred electrons to Mn(Ⅳ), and the formed As(Ⅴ) oxyanions were bound to ferric oxide as inner-sphere complexes by coordinating their "–OH" groups with Mn(Ⅳ)oxides at the surface of MRGO–FMBO.This work could provide new insights into highperformance removal of As(Ⅲ) in aquifers.  相似文献   

11.
Schwertmannite is an amorphous iron(III)-oxyhydroxysulfate that forms in acid mine drainage(AMD) environments. The characteristic of high heavy metal adsorption capability makes schwertmannite a potentially useful, environmentally friendly material in wastewater treatment. Unstable schwertmannite is prone to recrystallization.Understanding the mechanisms that induce schwertmannite labilization and affect its capacity to remove heavy metals are of great environmental and geochemical significance.Thiocyanate(SCNˉ) is a hazardous pseudohalide that is also normally found in AMD.However, little is known about the impact of Fe(III)-binding ligand SCNˉ on schwertmannite stability and its subsequent capacity to bind trace elements. Here, we investigated the adsorption of SCNˉ on schwertmannite and subsequent mineral transformation to characterize this little-known process. The appearance of Fe2+indicated that the interactions between schwertmannite and SCNˉ may involve complexation and reduction reactions. Results showed that the majority of the adsorbed-SCNˉ was immobilized on schwertmannite during the 60-days transformation. The transformation rates of schwertmannite increased with increasing concentrations of SCNˉ. Goethite was detected as the dominant transformation product with or without SCNˉ. The mechanisms of SCNˉ-promoted dissolution of schwertmannite can be described as follows:(1) formation of Fe(III)–NCS complexes on the schwertmannite surface and in solution, a process which increases the reactivity of solid phase Fe(III);(2) the extraction of Fe(III) from schwertmannite by SCNˉ and subsequent schwertmannite dissolution; and(3) the formation of secondary minerals from extracted Fe(III). These findings may improve AMD treatment strategies and provide insight into the use and potential reuse of schwertmannite as a trace element sorbent.  相似文献   

12.
Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, suggesting that diflusion predominated the sorption of PFOS on the humic acid. The sorption capacity was doubled when the temperature increased from 5 to 35°C, and thermodynamics parameters △G0 was calculated to be -7.11 to -5.04 kJ/mol, △H0 was 14.2 kJ/mol, and △S 0 was 69.5 J/(mol·K), indicating that the sorption was a spontaneous, endothermic, and entropy driven process. Desorption hysteresis occurred at all studied temperatures which suggested that humic acid may be an important sink of PFOS in the environment.  相似文献   

13.
Molecular weight(Mw) is a fundamental property of humic acids(HAs), which considerably affect the mobility and speciation of heavy metals in the environment. In this study, soil humic acid(HA) extracted from Jinyun Mountain, Chongqing was ultra-filtered into four fractions according to the molecular weight, and their properties were characterized.Complexation of cadmium was investigated by titration experiments. For the first time,Langmuir and non-ideal competitive adsorption-Donna(NICA-Donnan) models combined with fluorescence excitation-emission matrix(EEM) quenching were employed to elucidate the binding characteristics of individual Mw fractions of HA. The results showed that the concentration of acidic functional groups decreased with increasing Mw, especially the phenolic groups. The humification degree and aliphaticity increased with increasing Mw as indicated by elemental composition analysis and FT-IR spectra. The binding capacity of Cd~(2+) to Mw fractions of HA followed the order UF1( 5 kDa) UF2(5–10 kDa) UF4( 30 kDa) UF3(10–30 kDa). Moreover, the distribution of cadmium speciation indicated that the phenolic groups were responsible for the variations in binding of Cd~(2+) among different Mw fractions. The results of fluorescence quenching illustrated that the binding capacity of Cd~(2+) to Mw fractions was controlled by the content of functional groups, while the binding affinity was largely influenced by structural factors. The results provide a better understanding of the roles that different HA Mw fractions play in heavy metal binding,which has important implications in the control of heavy metal migration and bio-toxicity.  相似文献   

14.
To develop more efficient chemical methods for the demineralization of organic pollutants from water bodies, which one was also mimic to the nature, a degradation of methylene blue by Fe( Ⅲ ) and H2O2 in the absence of light instead of Fe( Ⅱ ) and H2O2 was studied. Results showed that use of Fe ( Ⅲ ) is more promising than Fe( Ⅱ ). The present study reflects that Fenton reaction is more efficient, in the presence of a small amount of salicylic acid is added which is a one of the priority pollutant.  相似文献   

15.
Competitive and cooperative adsorption of arsenate and citrate on goethite   总被引:1,自引:1,他引:0  
The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly a ected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006–0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no e ect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the watergoethite interface as well.  相似文献   

16.
Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs).The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC.To study the potential causes of the sorption attenuation,humic acid (HA) and BC were isolated.Phenanthrene (PHE) was selected as the representative of HOCs.BC was coated with the precipitated HA.The PHE sorption to the HA-coated BC was determined.The HA coatings on BC could result in the significant sorption attenuation of PHE to BC.The attenuation varied in different HA origin and was positively correlated to the aromaticity of HA.The attenuation could be explained by the direct competition between HA and PHE for the available sorption sites on BC and the reduction of the available sorption sites as a result of the pore blockage of BC caused by the HA coatings.Therefore,the HA coatings on BC was one potential cause of the attenuation of HOC sorption to BC in soil and sediment.  相似文献   

17.
To explore the formation process and mechanism of organic matter and organic-mineral complex under humification and mineralization conditions, a series of samples including humic acid, kaolin, and humic acid-kaolin complex were prepared using a subcritical water treatment method(SWT) under specific temperature, pressure and reaction time conditions. HA was used as a surrogate for natural organic matter because it has a similar abundant pore structure,variety of carbon types, and chemical components. These samples were used in carbamazepine(CBZ) sorption experiments and characterized by a variety of techniques. The polymerization of humic acid under the conditions of increased temperature and pressure resulted in an increase in specific surface area and molecular quantity. In addition, the degree of aromaticity rose from59.52% to 70.90%. These changes were consistent with the transformation from ‘soft carbon' to‘hard carbon' that occurs in nature. The results of sorption experiments confirmed the interaction between humic acid and kaolin from the difference between the predicted and actual Qevalues. The conceptual model of humic acid-kaolin complex could be deduced and described as follows. Firstly, the aromatic components of humic acid preferentially combine with kaolin through the intercalation effect, which protects them from the treatment effects.Next, the free carboxyl groups and small aliphatic components of humic acid interact on the surface of kaolin, and these soft species transform into dense carbon through cyclization and polymerization. As a result, humic acid-kaolin complex with a mineral core and dense outer carbonaceous patches were formed.  相似文献   

18.
Phosphorus ( P ) in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment. The mobility and bioavailability of P primarily depend on the contents of different P forms, which in turn depend on the sedimentary environment.Here, sediment samples from Baiyangdian (BYD) lake were collected and measured by the Standards, Measurements, and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) to characterize different P forms and their relationships with sediment physicochemical properties. The P content in the sediments varied in different areas and had haracteristics indicative of exogenous river input. Inorganic P (334–916 mg/kg) was the dominant form of P . The 31P NMR results demonstrated that orthophosphate monoesters (16–110 mg/kg), which may be a source of P when redox conditions change, was the dominant form of organic P (20–305 mg/kg). The distribution of P forms in each region varied greatly because of the effects of anthropogenic activities, and the regions affected by exogenous river input had a higher content of P and a higher risk of P release. Principal component analysis indicated that P bound to Fe, Al, and Mn oxides and hydroxides (NaOH-P) and organic P were mainly derived from industrial and agricultural pollution, respectively. Redundancy analysis indicated that increases in pH lead to the release of NaOH-P. Organic matter plays an important role in the organic P biogeochemical cycle, as it acts as a sink and source of organic P .  相似文献   

19.
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.  相似文献   

20.
Perfluorooctane sulfonate(PFOS) is a persistent organic pollutant(POP) and emergent contaminant that are widespread in the environment. Understanding the mechanisms controlling the distribution of PFOS and its isomers between hydrargillite and the water phase is important in order to study their redistribution and mobility in the environment. This study investigated the effects of pH, humic acid, fulvic acid and Na2SO4 on sorption of PFOS isomers to hydrargillite. A mixture...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号