首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
以华南稻田土壤为研究对象通过构建微宇宙体系,研究了淹水稻田自养硝酸盐还原耦合As(III)氧化过程及其微生物群落结构组成.结果表明,NO3-的添加促进了稻田土壤中As(III)的氧化,在未添加NO3-的处理(Soil+As(III))以及灭菌处理(Sterilized soil+As(III)+NO3-)中As(III)未发生明显的氧化;在Soil+As(III)+NO3-处理中,NO3-有少量被还原,而在Soil+NO3-处理中,NO3-没有被还原.通过16S rRNA高通量分析在NO3-还原耦合As(III)氧化体系中微生物群落结构特征,在Soil+As(III)+NO3-处理中shannon指数相对较低为8.19,土壤微生物群落多样性降低,其中在门水平上主要优势菌群为变形菌门Proteobacteria(33%)、绿弯菌门Chloroflexi(11%)、浮霉菌门Planctomycetes(12%);在属水平上主要的优势菌属为Gemmatimonas(7.4%)以及少量的Singulisphaera、Thermomonas、Bacillus.NO3-的添加能够促进稻田土壤中自养As(III)氧化,并且影响着稻田土壤中微生物群落组成.  相似文献   

2.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

3.
以厌氧氨氧化颗粒为对象,利用NH4+、NO2-、NO3-和N2O微电极测定了浓度连续分布,并建立微生物原位活性与N2O产生之间的关系.结果表明,NH4+和NO2-同步消耗的厌氧氨氧化活性区分布在颗粒的表层区域(0~1500μm),其中200~400μm活性最高;当NH4+-N浓度为14mg/L(c(NH4+):c(NO2-)=1:1.2)时,NH4+-N和NO2--N最大净体积消耗速率分别为1.19与1.65mg/(cm3·h).反硝化活性主要分布在1500~2500μm的深层区域,当采用...  相似文献   

4.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

5.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

6.
传统观点认为土壤氮素转化要有微生物的参与,但越来越多的研究发现,非生物转化在一些特定条件下同样发挥着不可忽略的作用,该途径下N2O产生量甚至超过生物学过程而占主导作用.作为一种重要的非生物土壤氮素转化方式,化学反硝化产生途径虽然已经被发现近一个世纪,但在现代生态学研究中通常因研究分散而往往被忽视.鉴于此,对土壤化学反硝化及N2O产生机制、影响因素的研究进展进行总结,并对化学反硝化的不足和薄弱环节提出展望.结果表明:土壤化学反硝化及N2O产生的机制主要包括高价氮还原和羟胺分解两种作用;影响土壤化学反硝化的因素主要包括pH、温度、反应底物浓度、有机质、固相界面及金属离子,如高pH、固相界面和Cu2+的存在均会促进化学反硝化过程;不同形态Fe直接参与化学反硝化生成N2O的途径不同,主要包括Fe2+还原NO2-和NO3-,Fe3+氧化NH2OH.然而,现有研究对于化学反硝化机理的边界划分等问题仍不明确,因此,建议强化羟胺在土壤化学反硝化途径中作用机理的基础性研究,以及多因素综合影响下化学反硝化强度和N2O产生特征方面的应用性研究.   相似文献   

7.
利用不同驯化条件(Soil、Soil+Fe(Ⅱ)、Soil+NO_3~-和Soil+Fe(Ⅱ)+NO_3~-)对华南水稻土进行中性厌氧条件下的富集培养,探究淹水期水稻土亚铁(Fe(Ⅱ))氧化和硝酸盐(NO_3~-)还原过程,及此过程中微生物群落的变化.结果表明,在Soil+Fe(Ⅱ)处理中,亚铁不能发生自然氧化.只有在Soil+Fe(Ⅱ)+NO_3~-处理中,Fe(Ⅱ)才能被氧化成Fe(Ⅲ);同时,Fe(Ⅱ)的存在减慢了NO_3~-的还原.利用高通量测序技术表征微生物群落组成随培养时间的变化,结果表明,Soil+Fe(Ⅱ)和Soil处理的微生物群落组成没有显著差异.在Soil+NO_3~-处理中,Pseudogulbenkiania、Flavobacterium和Rhodocyclus属成为优势菌群.在Soil+Fe(Ⅱ)+NO_3~-处理中,Zoogloea、Geothrix、Sunxiuqinia和Vulcanibacillus等属成为优势菌群,主要包括硝酸盐还原菌、Fe(Ⅱ)氧化菌和Fe(Ⅲ)还原菌.  相似文献   

8.
研究了单质硫颗粒自养反硝化柱中表面和间隙生物膜的微生物群落结构、功能基因和代谢途径等生物信息学特征.结果表明,硫颗粒表面生物膜的微生物菌群多样性低于间隙生物膜.氮代谢功能基因丰度差异较为显著,间隙生物膜中硝酸盐和亚硝酸盐的胞外转运蛋白基因丰度远高于表面生物膜,分别为0.0792%、0.109%与0.0157%、0.0314%.对于还原性反硝化代谢,表面生物膜的总基因丰度却明显低于间隙生物膜,分别为0.367%、0.406%.此外,参与反硝化过程的基因丰度明显不同,特别是将NO3-还原成NO2-以及将N2O还原成N2过程中的基因.对于硫代谢,没有观察到明显的差异.APS (硫酸腺苷)氧化是将SO32-氧化为SO42-的主要途径,其基因丰度远远高于直接氧化途径,分别为0.137%与0.0005%(表面)、0.138%与0.0007%(间隙).结果表明,在单质硫自养反硝化过程中,间隙生物膜与表面生物膜中的微生物存在合作关系,协同促进硫自养反硝化脱氮过程.  相似文献   

9.
有研究表明,适量Fe2+与Fe3+能够促进anammox菌体代谢,但对于菌体N2O产量的影响仍未可知。该文以批次实验的形式探究anammox在不同浓度Fe2+与Fe3+浓度下的N2O产量,并分析其微生物组学和功能基因变化。结果表明,加入Fe2+的组别中N2O排放量在20 mg/L Fe2+时最高(0.29 mg/L),30 mg/L Fe2+时下降47.01%;加入Fe3+的组别中N2O排放量随Fe3+浓度递增,30 mg/L Fe3+时N2O最高排放量为0.17 mg/L。微生物群落多样性分析表明,5 mg/L Fe2+和Fe3+能刺激Candidatus Kuenenia的生长,然而反硝化菌Denitratisom...  相似文献   

10.
为了明确曝气灌溉下土壤N2O排放特征及主要影响因子,实验设置了2个灌水量(70%和90%田间持水量)和2个增氧水平(5,40mg/L),采用静态箱法和qPCR技术对土壤N2O通量及土壤关键功能基因进行测定,研究不同灌水量和增氧水平对土壤充水孔隙度、溶解氧、氧化还原电位(Eh)、矿质氮及氨氧化古菌(AOA)、氨氧化细菌(AOB)和反硝化基因(narG和nosZ)的影响.结果表明:培养过程中,各处理N2O排放通量均呈现先增加后降低的趋势,于灌溉后1d达到峰值;曝气量和灌水量的增加可显著增加土壤N2O的排放通量和排放峰值.灌溉造成土壤含水量增加的同时,降低了土壤溶解氧和Eh;曝气可提高土壤溶解氧和Eh,改善土壤通气性(P<0.05),而对土壤充水孔隙度无显著影响.土壤充水孔隙度、Eh、NO3--N含量是曝气灌溉下驱动土壤N2O排放的主要理化因子.曝气显著增加了AOA的基因拷贝数,且N2O排放与AOA的基因拷贝数呈显著正相关关系(P<0.05).研究结果为进一步明确曝气灌溉对土壤N2O排放的影响机制和曝气灌溉模式下农田N2O排放管理提供支撑.  相似文献   

11.
为探究锌(Zn)污染对农田土壤氧化亚氮(N2O)排放的影响,分别以猪粪和尿素为肥源进行室内培养实验,对比分析不同含量Zn (0、50、500、1500和5000mg/kg)对N2O排放的影响及其机制,并在培养第52d向所有处理再次添加尿素以探究其长期效应,共培养80d.结果表明:第1次添加肥料阶段,在尿素为肥源处理中不同含量Zn均表现为显著抑制作用(P<0.05),而猪粪为肥源处理中除50mg/kg无显著影响外(P>0.05),其它含量处理均显著促进N2O排放(P<0.05).第2次添加肥料阶段,不同肥源条件下Zn的作用规律一致,即50mg/kg无显著影响(P>0.05),500和1500mg/kg显著提高N2O排放而5000mg/kg处理与之相反(P<0.05).此阶段500、1500和5000mg/kg处理以猪粪和尿素为肥源时其N2O累积排放量与同肥源对照的比值分别为3.49、3.13、0.01和2.53、2.74、0.04,可见同等含量Zn在猪粪为肥源条件下作用更强,500和1500mg/kg Zn的促进机制为Zn提高了土壤中NH4+-N、NO3--N含量以及控制反硝化过程N2O产生和还原功能基因相对丰度的比值(nirS/nosZ),而5000mg/kg Zn抑制了土壤中NH4+-N进一步转化为NO3--N,从而降低了N2O排放.  相似文献   

12.
针对固相反硝化体系,以聚己内酯复合花生壳(PCL/PS)的固体碳源为基底,耦合以S和Fe O主导的自养反硝化,构建新型多功能碳源,考察其对典型微污染物(Cr(Ⅵ)、Cl O4-、BPA、NPX)与硝酸盐的同步降解效能,探究自养异养共存的反硝化体系内微生物群落特征及微观作用机制.结果表明,PCL/PS异养反硝化体系具有更好的反硝化脱氮和同步去除Cr(Ⅵ)、BPA性能,对NO3--N、Cr(Ⅵ)的去除率分别为94%、92%,对NO3--N、BPA的去除率均可达99%以上;PCL/PS同时耦合Fe O和S的体系反硝化脱氮同步去除Cl O4-、NPX性能良好且稳定,在反硝化率均维持90%的基础上,对NO3--N、Cl O4-的去除率分别达90%、96%,对NO3--N、NPX的去除率分别达9...  相似文献   

13.
本实验研究了序批式条件下Cr(Ⅵ)和NO3-浓度、pH值和H2含量对于氢自养还原菌同步去除水中Cr(Ⅵ)和NO3-的性能及微生物群落的影响.结果表明:系统中存在氢气时,正常活性的氢自养还原菌可实现Cr(Ⅵ)的还原;Cr(Ⅵ)初始浓度不高于2000 μg/L时,Cr(Ⅵ)和NO3-的还原速率及氢自养还原菌的活性不会受到Cr(Ⅵ)初始浓度的影响;作为一种优先电子受体,NO3-会与Cr(Ⅵ)争夺电子,降低Cr(Ⅵ)的还原速率;氢自养还原菌同步还原Cr(Ⅵ)和NO3-的最佳pH值为7.0左右,酸性或碱性环境都会抑制Cr(Ⅵ)还原,且NO2-会随着pH值的升高逐渐积累;作为电子供体,H2是还原Cr(Ⅵ)和NO3-的必要条件,但H2足量后,过量提供H2不能提高Cr(Ⅵ)和NO3-的还原速率.  相似文献   

14.
为探明地下滴灌对番茄根际微区氮循环微生物及土壤N2O排放的影响,采用静态暗箱原位采集法,研究了不同滴灌管埋深(0、10、20、30 cm,依次记为CK、S10、S20、S30处理)对番茄根区土壤水分、养分、根系形态、微生物及N2O排放的影响.结果表明:S10处理可提高10~20 cm土壤含水率,其土壤NO3--N含量、DOC(溶解性有机碳)含量、根系分叉数、开花坐果期反硝化菌数量、果实成熟期亚硝化菌和反硝化菌数量分别为CK处理的2.02、1.49、1.85、3.81、2.11和3.75倍(P < 0.05),且0~20 cm土壤孔隙度较CK处理增加了10.72%(P < 0.05),N2O排放量为CK处理的1.99倍(P < 0.05).S20处理显著提高了20~30 cm土壤含水率,其土壤NO3--N含量、DOC含量、根系分叉数、开花坐果期反硝化菌数量、果实成熟期亚硝化菌和反硝化菌数量分别为CK处理的2.66、1.38、2.77、6.0、5.56和12.50倍(P < 0.05),且0~20 cm土壤孔隙度较CK处理增加了22.32%(P < 0.05),N2O排放量为CK处理的2.24倍.S30处理形成0~20 cm土壤“干层”和20~40 cm土壤“湿层”,土壤NO3--N含量、根系分叉数、开花坐果期亚硝化细菌和反硝化细菌数量分别为CK处理的1.66、2.22、2.00和1.80倍(P < 0.05),但DOC含量、0~20 cm土壤孔隙度、反硝化细菌数量等显著低于S20处理(P < 0.05),N2O排放量与CK处理无显著差异(P < 0.05).地下滴灌方式下土壤N2O排放主要为反硝化作用,不同滴灌管埋深形成的土壤水分分布会影响根系分叉数和0~20 cm土壤孔隙度,调节NO3--N和DOC含量、亚硝化细菌和反硝化细菌生物量,影响“根系-土壤-微生物”的交互作用和N2O排放量.S10、S20处理下根区环境利于增强“根系-土壤-微生物”的交互作用、促进反硝化作用和N2O排放,S30处理相对会减弱“根系-土壤-微生物”的交互作用、抑制N2O排放.研究显示,地下滴灌管埋深(土壤供水位置)通过调节根际微区土壤环境,改变氮循环微生物组成,进而影响“根系-土壤-微生物”的交互作用效应和土壤N2O排放量.   相似文献   

15.
采用UASB反应器在改变NO2--N/NH4+-N比条件下,考察厌氧氨氧化系统对NH4+-N的超量去除特征、相关酶的催化活性以及污泥菌群结构.结果表明,随着进水NO2--N浓度降低,反应器对NH4+-N的去除量相比理论较大,在停供NO2--N情况下,反应器内NH4+-N去除可达55 mg/L.反应器内NH4+-N的去除并不是是来自进水中SO42-和Fe3+/EDTA络合物,而是存在NH4+-N的好氧硝化.过氧化氢酶测定联合分子生物学技术分析显示,好氧硝化的所需氧量分别来自进水和过氧化氢酶产氧.反应器底部污泥层的氨氧化菌(AOB)、厌氧氨氧化菌(AnAOB)活性优于上部污泥层,相反,上部污泥层的异养反硝化菌(HDB)活性优于底部污泥层,二者协同将NH4+-N转化为N2.  相似文献   

16.
选取参与碳固定的二磷酸羧化/加氧酶基因(cbbM)、有机碳降解的淀粉酶基因(amylase)和纤维素酶基因(cellulase)作为分子标记,用实时定量PCR方法对温带亚高山华北落叶松(Larix gmelinii var.principis-rupprechtii)林、白杄(Picea meyeri)林、青杄(P.wilsonii)林和油松(Pinus tabulaeformis)林土壤碳循环功能微生物类群丰度的时空动态开展研究.结果显示,总碳(TC)、总氮(TN)、总硫(TS)、有机质(OM)和有机碳(TOC)、pH值、铵态氮(NH4+-N)、硝态氮(NO3--N)、过氧化氢酶、蔗糖酶和脲酶活性在4种森林土壤中都有不同程度的差异,且有显著的季节变化特征.高海拔华北落叶松林土壤TC、TN、TS、C/N、OM和TOC含量最高,而pH值最低.土壤TC、TN、亚硝态氮(NO2--N)含量、蔗糖酶和脲酶活性,与碳循环微生物类群的丰度呈极显著相关.土壤NO3--N含量与有机碳分解和固碳微生物类群的相对丰度显著相关;土壤C/N、NO2--N、pH值、OM、TOC、过氧化氢酶及脲酶活性,与降解易分解碳(labile C)和难分解碳(recalcitrant C)的微生物类群的相对丰度呈极显著相关.植被类型和季节变化共同影响土壤碳循环微生物类群的丰度,而季节变化是主导因素.植被和土壤环境因子通过调控微生物群落碳代谢功能类群的结构,影响森林土壤碳源-汇的平衡.  相似文献   

17.
张哲  张姚  刘清华  刘超  王亚宜 《中国环境科学》2019,39(12):5056-5062
采用移动床生物膜反应器(MBBR),利用载体固定化氨氧化菌(AOB),分别以连续曝气和间歇曝气方式长期平行运行两套MBBR亚硝化反应器(RC和RI反应器),分析对比不同曝气方式下亚硝化工艺性能和强温室气体(N2O和NO)释放特性.结果表明:两种曝气方式均能实现亚硝化工艺,但RI出水NO2--N平均浓度较RC高20%左右,且出水NO2--N和NO3--N浓度波动性更小,因此间歇曝气条件下具有更好的亚硝化效果,更易形成稳定的亚硝化体系.在线测定两种体系N2O和NO释放特性可知,RC比RI减少NO释放量约87.3%,增加N2O释放量约57.5%.16S rDNA高通量测序结果表明,Nitrosomonas为AOB主要菌属,相对丰度最高分别为8%和10.06%,最低分别为2.19%和2.26%.间歇曝气方式下反应器可获得更高的AOB相对丰度.  相似文献   

18.
选取参与碳固定的二磷酸羧化/加氧酶基因(cbbM)、有机碳降解的淀粉酶基因(amylase)和纤维素酶基因(cellulase)作为分子标记,用实时定量PCR方法对温带亚高山华北落叶松(Larix gmelinii var.principis-rupprechtii)林、白杄(Picea meyeri)林、青杄(P.wilsonii)林和油松(Pinus tabulaeformis)林土壤碳循环功能微生物类群丰度的时空动态开展研究.结果显示,总碳(TC)、总氮(TN)、总硫(TS)、有机质(OM)和有机碳(TOC)、pH值、铵态氮(NH4+-N)、硝态氮(NO3--N)、过氧化氢酶、蔗糖酶和脲酶活性在4种森林土壤中都有不同程度的差异,且有显著的季节变化特征.高海拔华北落叶松林土壤TC、TN、TS、C/N、OM和TOC含量最高,而pH值最低.土壤TC、TN、亚硝态氮(NO2--N)含量、蔗糖酶和脲酶活性,与碳循环微生物类群的丰度呈极显著相关.土壤NO3--N含量与有机碳分解和固碳微生物类群的相对丰度显著相关;土壤C/N、NO2--N、pH值、OM、TOC、过氧化氢酶及脲酶活性,与降解易分解碳(labile C)和难分解碳(recalcitrant C)的微生物类群的相对丰度呈极显著相关.植被类型和季节变化共同影响土壤碳循环微生物类群的丰度,而季节变化是主导因素.植被和土壤环境因子通过调控微生物群落碳代谢功能类群的结构,影响森林土壤碳源-汇的平衡.  相似文献   

19.
采用缺氧/好氧间歇运行模式,考察进水碳氮比(C/N=5.0,3.3,2.5,2.0)对部分反硝化过程亚硝态氮(NO2-)积累特性和污染物降解规律的影响,同时结合高通量测序,探究微生物多样性和功能菌群的演变规律.结果表明,C/N为2.5时,系统获得最佳处理效果,出水NO2-浓度为27.18mg/L,亚硝态氮转化率(NTR)高达67.96%;分析典型周期各污染物的降解规律发现,尽管4组工况均在缺氧30min时NO2-积累达到峰值(最高值分别为4.86(C/N=5.0),16.52(C/N=3.3),30.16(C/N=2.5),20.28(C/N=2.0) mg/L),但COD降解速率的不同直接影响了反硝化进程,且只有在低C/N条件(C/N=2.0~2.5)才能维持稳定的NO2-积累.高通量测序结果表明,除了Thauera(2.67%~24.04%)、Terrimonas(4.94%~21.19%)、Saprospiraceae(5.34%~13.50%)等常规功能菌属外,Flavobacterium(28.23%)是C/N为2.5时维持高NO2-积累的优势菌属.结合部分反硝化工艺的运行特点,探讨了NO2-作为中间产物的相关耦合工艺的应用可行性.  相似文献   

20.
N2O是导致臭氧层空洞和全球变暖的主要大气污染物,农业生产活动是其主要来源,而土壤盐分则是影响N2O排放的关键因素.基于21篇同行评议文献中528对实验组及对照组形成的数据集,运用R语言Metafor软件包进行Meta分析,进而评估土壤盐分对土壤N2O排放的影响.结果表明,土壤盐分累积对N2O排放量有显著正效应,中度和高度盐渍土N2O排放量比非盐渍土高75.57%和28.85%.室内培养实验测定结果表明,林地和农田的土壤盐渍化导致N2O排放量增加124.79%和131.64%,而野外定位监测试验结果表明,草地、裸地和农田中,土壤盐分对N2O排放的影响均不显著.盐分对N2O排放的影响趋势则因土壤(NH4+∶NO3-)、p H、土壤砂粒含量和粉粒含量的差异而发生改变,影响程度依次是:(NH4+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号