首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为了解厌氧/好氧运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步硝化反硝化(SND)的耦合脱氮除磷特性,以实际低C/N (约为3.5)生活污水为处理对象,先通过调控进水C/N考察其对EBPR启动和聚磷菌(PAOs)富集情况的影响,再通过调控好氧段DO浓度考察其对系统脱氮除磷性能、SND率及碳源转化特性的影响.结果表明,DO浓度为2.0mg/L,当进水C/N由3.2提高至7.5并降至3.8时,反应器出水PO43--P浓度由3.9mg/L逐渐降至0.5mg/L以下,且厌氧释磷量(PRA)由3.3mg/L逐渐升高至约30mg/L.此后,当DO浓度逐渐降至约1.0mg/L时,SND现象愈加明显,且其与EBPR耦合使得系统总氮(TN)和PO43--P去除率分别提高至85%和94%.但当DO浓度约为0.5mg/L时,硝化过程进行不完全,亚硝酸盐积累较为明显,耦合系统中存在同步短程硝化反硝化现象.DO浓度为约1.0mg/L时,系统具有最高的脱氮除磷性能.此外,当DO浓度由2.0mg/L降至0.5mg/L时,PAOs较聚糖菌(GAOs)在厌氧内碳源储存中的贡献逐渐减小(PPAO,An由30.3%逐渐降至20.2%),PRA降低约7mg/L.DO浓度为1.0~1.5mg/L最有利于系统厌氧段内碳源PHA的合成.  相似文献   

2.
为实现同步硝化内源反硝化除磷(SNEDPR)系统的优化运行,以实际生活污水为处理对象,采用厌氧(180min)/好氧运行的SBR反应器,并通过联合调控好氧段溶解氧(DO)浓度(0.3~1.0mg/L)和好氧时间(150~240min),考察了该系统脱氮除磷特性.并结合荧光原位杂交(FISH)技术对系统优化过程中各功能菌群的结构变化情况进行了分析.试验结果表明,当系统好氧段DO浓度由约1.0mg/L逐渐降至0.3mg/L,且好氧时间由150min逐渐延长至240min后,出水PO43--P浓度稳定在0.4mg/L左右,但出水TN浓度由14.3mg/L降至8.7mg/L,TN去除率由75%提高至84%.此外,随着好氧段DO浓度的降低,SNED现象愈加明显,SNED率由34.7%逐渐升高至63.8%.SNED的加强,降低了出水NO3--N浓度,并提高了系统的脱氮性能和厌氧段的内碳源储存量.FISH结果表明:经127d的优化运行,系统内PAOs,GAOs和AOB(氨氧化菌)仍保持在较高水平(分别全菌的29%±3%,20%±3%和13%±3%),其保证了系统除磷、硝化和反硝化脱氮性能;但NOB(亚硝酸盐氧化菌)含量减少了50%,为系统内实现短程硝化内源反硝化提供了可能.  相似文献   

3.
为研究同步短程硝化内源反硝化除磷(SPNED-PR)系统的脱氮除磷特性及系统内聚磷菌(PAOs)和聚糖菌(GAOs)在氮磷去除的贡献和竞争关系,本研究以实际低C/N比(4左右)生活污水为处理对象,考察了不同浓度的溶解氧(DO)(0.5~2.0mg/L)、NO2--N(4.7~39.9mg/L)和NO3--N(5.0~40.0mg/L)对延时厌氧(150min)/低氧(180min,溶解氧0.5~0.7mg/L)运行的SPNED-PR系统氮磷去除特性和底物转化特性的影响.结果表明,DO浓度均不影响PAOs和GAOs的好氧代谢活性,且两者之间几乎不存在DO竞争.不同NO2--N浓度条件下,GAOs较PAOs更具竞争优势,NO2--N主要是通过GAOs去除的(约占58%);且GAOs所具有的高内源反硝化活性和亚硝耐受力,减弱了高NO2--N浓度(26.2~39.9mg/L)对PAOs反硝化吸磷的抑制,保证了系统的脱氮除磷性能.不同NO3--N浓度条件下,PAOs较GAOs处于竞争优势,其在NO3--N去除中的贡献比例达61.2%.此外,SPNED-PR系统的PURDO > PURnitrate > PURnitrite,PAOs对DO的优先利用保证了低氧条件下系统的高效除磷,且GAOs的内源短程反硝化特性保证了系统的高效脱氮.  相似文献   

4.
为了解同步硝化内源反硝化系统(SNEDPR)脱氮除磷性能,采用延时厌氧(180 min)/低氧(溶解氧0. 5~2. 0 mg·L~(-1))运行的SBR反应器,以人工配置的模拟废水为处理对象,先采用恒定进水C/N(为10),以实现SNEDPR的启动和聚磷菌(PAOs)的富集培养,再调控进水C/N值(分别为10、7. 5、5和2. 5),考察不同C/N对系统的脱氮除磷性能的影响.结果表明,当进水C/N为10,可实现SNEDPR的启动与深度脱氮除磷,出水PO3-4-P和总氮(TN)浓度分别平均为0. 1 mg·L~(-1)和8. 1mg·L~(-1),PO3-4-P去除率、TN去除率和SNED率平均值分别为99. 79%、89. 38%和58. 0%.当进水C/N由5提高至10时,系统维持良好的脱氮除磷性能,释磷量(PRA)和SNED率分别由16. 0 mg·L~(-1)和48. 0%提高至24. 4 mg·L~(-1)和69. 2%;当C/N为10时,TN和PO3-4-P去除率最高达94. 5%和100%;当C/N为2. 5时,系统失去脱氮、除磷性能,PRA和SNED率仅为1. 36 mg·L~(-1)和10%.在系统稳定运行阶段(C/N为10、7. 5和5),SNED率达85. 9%,出水NH_4~+-N、NO-x-N和PO3-4-P浓度平均为0、8. 1和0. 1 mg·L~(-1).  相似文献   

5.
为探究同步硝化内源反硝化除磷(SNEDPR)强化移动床生物膜反应器(MBBR)工艺脱氮除磷的可行性,采用连续曝气和搅拌/曝气交替运行的MBBR反应器,以磁性填料作为载体处理模拟生活污水,考察了SNEDPR启动过程中的脱氮除磷性能,并结合荧光显微镜和高通量测序技术对各个功能菌群结构变化情况进行了分析.结果表明,经两阶段运行后,氨氮和磷去除率分别达到97.6%和85.37%,出水NO2-—N、NO3-—N和COD浓度分别为1.3949,3.88和20.4mg/L,同步硝化内源反硝化率(SNEDR)由0.07%逐渐升高至86.35%.好氧阶段同步硝化内源反硝化率的提高,使出水NOx-—N浓度下降,提高了系统的脱氮性能和厌氧阶段内碳源的储存量.荧光显微镜和高通量测序结果表明,经过53d的运行,微生物群落多样性呈显著提高,系统内GAOs、AOB、NOB丰度的提高(分别由接种污泥中的3.3%、0.84%和0.66%提高至系统内的27.08%/20.48%、1.45%/1.76%和1.05%/0.85%)和PAOs、DPAOs的存在,保证了系统的脱氮除磷性能,在MBBR工艺中实现了EBPR与SNED的耦合.  相似文献   

6.
为实现低C/N城市污水与含硝酸盐废水的同步处理,采用SBR接种活性污泥,通过合理控制厌氧/缺氧/低氧时间和溶解氧(DO)浓度,实现了反硝化除磷耦合同步硝化内源反硝化(DPR-SNED)系统的启动,并对启动过程中系统的脱氮除磷特性进行了研究.结果表明采用厌氧/低氧的运行方式,控制厌氧时间为3 h,好氧段DO浓度为0. 5~1. 0 mg·L-1,60 d可实现同步硝化内源反硝化除磷(SNEDPR)系统的启动,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统氮磷去除率维持在90%以上,COD的去除率维持在80%以上,系统SNED率和CODins率分别维持在70%和95%左右;随后改变运行方式,采用厌氧/缺氧/低氧的方式运行,缺氧段前进含硝酸盐废水,45 d可实现DPR-SNED系统的启动,缺氧末PO_4~(3-)-P浓度1. 1 mg·L-1,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统磷、COD去除率均维持在90%以上,氮去除率维持在88%以上,系统SNED率和CODins率分别维持在62%和90%左右. DPR-SNED系统的成功启动后,厌氧段聚糖菌和聚磷菌对城市污水有限碳源的充分利用和强化储存,可为后续缺氧段及好氧段的脱氮除磷提供充足的内碳源.此外,DPR-SNED系统缺氧段内源短程反硝化的进行保障了系统在低C/N(4)条件下的高效脱氮.  相似文献   

7.
进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响   总被引:1,自引:0,他引:1  
为了解富集聚磷菌(PAOs)的同步硝化反硝化除磷(SNDPR)系统的脱氮除磷特性,采用延时厌氧(180min)/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以实际生活污水为处理对象, 通过投加固态乙酸钠调节进水C/N值(约为11,8,4,3),考察其对系统脱氮除磷特性及同步硝化反硝化(SND)脱氮率的影响.结果表明:C/N对系统的除磷性能没有影响,出水PO43--P浓度均稳定在0.3mg/L左右,这是由于系统内聚磷菌(PAOs)含量高,且在低氧段可同时发生好氧吸磷与反硝化吸磷.随着C/N的增大,出水NH4+-N浓度升高,C/N下降时,出水NO3--N浓度升高.此外,随着C/N的减小,厌氧段反硝化所消耗的COD占进水COD的比例增大,SND可利用的内碳源-PHAs储存量减少,但PHV的利用率增加;当C/N为4~8时,SND现象最明显,SND脱氮率达50.8%,而其它C/N条件下,SND脱氮率都有相应程度的减弱.C/N为8时,系统出水综合指标最好,TN去除率高达80.8%.  相似文献   

8.
为促进反硝化除磷与厌氧氨氧化工艺的耦合,实现污水氮、磷的同步高效去除,构建序批式反应器(Sequencing batch reactor,SBR),优化了反硝化除磷工艺实现亚硝酸盐积累的工艺参数.SBR在厌氧-缺氧-微好氧运行条件下,缺氧段投加模拟硝酸盐工业废水逐步实现了反硝化除磷过程的亚硝酸盐积累.结果表明,经过142d的培养驯化,在进水C/P比为55时,缺氧段引入NO3--N浓度为23mg/L时,亚硝酸盐积累率为51.01%,NO3--N→NO2--N转化率为40.22%,硝酸盐去除率为72.14%,PO43--P去除率最高达88.17%.出水COD浓度低于25mg/L,COD去除率维持在90%以上.微生物群落结构分析表明,拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)为系统内优势菌门.通过参数优化实现了聚磷菌的驯化,Candidatus Accumulibacter为代表的反硝化聚磷菌丰度增加(累积丰度由1.49%增加到5.08%),以Candidatus Competibacter为代表的反硝化聚糖菌丰度增加更为明显(累积丰度由1.02%增加到15.49%),聚磷菌与聚糖菌的共同作用有利于实现除磷过程的亚硝酸盐累积.  相似文献   

9.
本研究以模拟城市污水和高硝酸盐废水为处理对象,在一个厌氧-缺氧-微曝气运行的SBR反应器内,将短程反硝化工艺(PD,NO_3~-→NO_2~--N)与反硝化除磷工艺(DPR)耦合,并通过联合调控进水C/N比、厌氧排水率和缺氧时间,考察了PD-DPR系统的亚硝酸盐积累特性和除磷性能.结果表明,经过140d,NO_3~-→NO_2~--N转化率(NTR)为80.1%,PO~(3-)_4-P去除率高达97.64%.在厌氧段(180 min),聚糖菌(GAOs)和聚磷菌(PAOs)对污水有机碳源进行充分利用,将其转化为内碳源;缺氧段(150 min),反硝化聚糖菌(DGAOs)和异养反硝化菌(DOHOs)分别进行内源和外源短程反硝化实现NO~-_2-N稳定积累,同时反硝化聚磷菌(DPAOs)进行高效反硝化吸磷;微曝气段(10 min),在不发生硝化反应的前提下,PAOs超量吸磷,提高了系统的除磷性能.系统出水NO~-_2-N/NH~+_4-N为1.31∶1(接近厌氧氨氧化工艺理论值1.32∶1),PO~(3-)_4-P浓度为0.30 mg·L~(-1),COD浓度为12.94 mg·L~(-1).其出水水质可满足与厌氧氨氧化(ANAMMOX)工艺耦合进行深度脱氮的需求.  相似文献   

10.
为了解不同污泥龄(SRT)对同步硝化内源反硝化除磷(SNEDPR)系统脱氮除磷性能的影响,采用4组延时厌氧(180min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的SBR反应器,以实际城市污水为处理对象,考察不同的SRT(5、10、15、25 d)条件下系统的脱氮除磷性能及其污泥性状的变化情况.结果表明,当SRT≥10 d时,短SRT有利于提高PAOs的竞争优势;在SRT为15 d和10 d时,系统除磷性能均较高,尤其是当SRT=10 d时,PPAOs,An平均为68.4%,PRA和PUA分别高达31.9mg·L~(-1)和34.3 mg·L~(-1).在SRT为15 d和10 d时,系统的硝化性能不受SRT变化的影响,且在SRT=15 d时,系统具有最高的脱氮性能,TN去除率和SNED率分别平均为89.6%和71.8%.在SRT≥10 d时,系统的COD去除性能不受SRT的变化影响,去除率达78%以上;但SRT=5 d时,由于系统生物量的流失使得系统对C、N、P的去除性能均较差,SNED率和PO3-4-P去除率分别低至5.7%和0.5%.此外,在SRT=15 d时,系统污泥沉降性能最好,SV和SVI分别为20%和64 mL·g~(-1),且污泥浓度随着SRT的延长而升高;长SRT(25 d)下系统抗冲击负荷能力较强,但污泥的沉降性能变差.  相似文献   

11.
接种厌氧/缺氧/好氧-生物接触氧化(AAO-BCO)系统的反硝化除磷污泥,采用厌氧/缺氧/好氧-序批式(AAO-SBR)系统,重点考察了乙酸盐和丙酸盐配比(1:0,2:1,1:1,1:2和0:1)对反硝化除磷效率的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明,5种工况下,AAO-SBR系统均具有较高的有机物去除和反硝化除磷能力.而当乙酸钠/丙酸钠=1:0时,厌氧阶段在高效利用COD(87.63%)的同时完成聚-β-羟基烷酸(PHAs)的合成(174mgCOD/gMLSS),释磷量高达31.22mg/L;缺氧阶段PO43--P的去除(74%)伴随着NO3--N反硝化(90%),PHAs利用率为72.4%,实现了氮磷的高效去除.高通量测序结果表明:不同碳源配比影响了微生物菌群的丰富度和多样性,其中变形菌门(Proteobacteria,31%~76%)、绿弯菌门(Chloroflexi,1%~26%)、拟杆菌门(Bacteroidetes,2%~31%)等占据绝大比例,而乙酸钠、丙酸钠共存时,微生物的多样性较好.当乙酸钠为单一碳源时,系统中聚磷菌(PAOs,21.364%)在与聚糖菌(GAOs,2.317%)的竞争中占绝对优势.  相似文献   

12.
本文研究了大黑汀水库表层沉积物碳氮磷污染负荷及分布特征,利用Peeper (pore water equilibriums)技术获取沉积物-水界面氮磷剖面特征,分析大黑汀水库间隙水氮磷分布的空间差异;采集沉积物无扰动柱样用静态培养法对其水土界面氮磷交换速率进行估算.结果表明:沉积物中TN、TP和TOC的含量分别在729~5894mg/kg、1312~2439mg/kg和0.5%~5.6%之间,沉积物中氨氮(NH4+-N)、硝酸盐氮(NO3--N)、亚硝酸盐氮(NO2--N)和活性磷(PO43--P)含量分别在0.6~202.9、34.4~168.3、0.1~0.3和16.1~75.2mg/kg之间,主要表现为下游含量高于上游,空间分布特征明显;沉积物C/N表明该水库有机质主要来源于水体内部,与人类网箱养殖活动有关.间隙水中NH4+-N和PO43--P浓度远高于上覆水,表明大黑汀水库间隙水具有向上覆水体扩散营养盐的潜力.在垂直方向上间隙水中NH4+-N浓度随深度的增加而变大,PO43--P浓度具有在0~4cm快速增加,之后表现出逐渐降低的趋势.静态释放结果表明,沉积物-水界面NH4+-N和PO43--P的交换通量分别为3.5~110.5mg/(m2·d)和0.1~1.6mg/(m2·d),NO3--N和NO2--N交换通量在-112.5~157.2mg/(m2·d)和0.04~0.94mg/(m2·d)之间.NH4+-N、NO3--N和PO43--P在下游表现出较高的释放速率.较高的沉积物内源负荷使得大黑汀水库沉积物具有较大的向上覆水释放营养盐的潜力,改善水库沉积物污染状况是治理大黑汀水库水体环境的必要之举.  相似文献   

13.
根据2013年7月(夏季),11月(秋季)和2014年5月(春季)渤海中部海域营养盐数据以及温盐等数据,以浮游植物对营养盐的吸收阈值和化学计量关系为判断标准,对研究海域营养盐分布、限制状况以及季节变化特征进行分析,结果表明:调查海域内各营养盐组分变化均呈现明显季节性特征,表现为夏季低秋季上升春季下降的趋势.夏季受冲淡水影响,海水存在层化现象,溶解无机氮(DIN)、PO43--P和SiO32--Si含量分别为(10.33±7.75)、(0.05±0.03)和(3.94±3.19)μmol/L,DIN/P较高,Si/DIN远低于1,其中表层和10m层存在P和Si限制站位分别达93%、93%和40%、20%,限制状况严重.秋季受底层沉积物扰动再悬浮及营养盐矿化释放等因素影响,各种营养盐含量迅速上升,DIN、PO43--P和SiO32--Si含量为(16.44±6.51)、(0.54±0.20)和(16.94±6.37)μmol/L,分别升高了1.6、10.8和4.3倍,垂向分布差异较小,且仅存在P潜在限制现象.春季由于陆源输入相对较少,同时受浮游植物吸收等因素影响,各营养盐含量急剧下降,DIN、PO43--P和SiO32--Si含量分别为(9.04±8.06)、(0.06±0.04)和(2.47±1.90)μmol/L,分别降低了45%、89%和85%,其中部分站位PO43--P和SiO32--Si含量低于阈值,在表层和10m层海水中存在P和Si限制站位分别达70%、65%和55%、50%,对海域内硅藻作为优势种的浮游植物生长和初级生产力产生影响.  相似文献   

14.
将镁掺杂进水泥基材料铝酸三钙(C3A)制得新型富镁铝酸三钙(Mg@C3A)应用于水体氨氮(NH4+-N)和磷(PO43-)的共去除.通过批量实验,考察了Mg@C3A投加量、氮磷浓度、溶液pH值、温度等因素对NH4+-N、PO43-共去除的影响,并阐述了共去除机制.结果表明:Mg@C3A是由Mg掺杂C3A同构体和表面MgO组成,其中Mg的引入未改变C3A晶体结构和基本形貌.Mg@C3A材料对NH4+和PO43-具有良好的共去除效果.当Mg@C3A的投加量为3g/L,NH4+和PO43-的最大去除量分别为38.4,78.9mg/g;温度升高有利于Mg@C3A对NH4+和PO43-的共去除,而高pH值可促进NH4+的去除.Mg@C3A材料对NH4+的去除主要是OH-的中和作用和鸟粪石的沉淀作用主导,PO43-主要是与Mg2+或Al3+结合形成鸟粪石或磷酸铝被去除.  相似文献   

15.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

16.
根据2016年初夏渤海湾营养盐、叶绿素a和相关水文参数等数据,利用浮游植物吸收营养盐最低阈值和化学计量关系作为判断依据对渤海湾营养盐限制状况进行分析.结果表明:受陆地径流和渤海中部冷水输入的影响,初夏渤海湾在近岸、中部和湾口呈现三个明显的温盐特征海区.溶解无机氮(DIN)和活性硅酸盐(SiO32--Si)受陆源输入影响,呈现近岸高湾口低的特征;DIN平均浓度为(7.67±6.48)μmol/L,SiO32--Si平均浓度为(5.44±3.01)μmol/L,在湾口表层,DIN含量较低仅为(2.21±2.94)μmol/L,其中50%站点含量低于阈值(1μmol/L),58.3%的站点存在DIN限制.而活性磷酸盐(PO43--P)受陆源输入和浮游植物吸收储存作用等因素影响,呈现西部和曹妃甸外近海高中部较低的分布特征,平均浓度为(0.07±0.07)μmol/L,近岸受陆源氮磷输入总量差异影响,表层存在磷潜在限制比例达100%,而中部表层受浮游植物消耗吸收的影响,PO43--P含量较低,仅为(0.02±0.02)μmol/L (未检出设为0),其中近74.3%的水样含量低于阈值(0.03μmol/L),磷限制状况严重.随着渤海湾氮磷营养盐陆源输入总量差距不断扩大,磷限制状况必将会进一步发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号