首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
珠江澳门水域水柱多环芳烃初步研究   总被引:24,自引:4,他引:20  
对采自澳门水域水柱不同深度水样溶解相及颗粒相(悬浮颗粒物)中的多环芳烃进行了定量分析。初步结果显示:多环芳烃质量浓度(溶解相和颗粒相)为1854 4~8733 4ng L,其中溶解相多环芳烃质量浓度为892~7944 5ng L,颗粒相为339 4~969 5ng L,16种优控多环芳烃的质量浓度为940~6654ng L;悬浮颗粒物中污染物的质量浓度自水柱表层至底部逐步减小,多环芳烃在颗粒相和溶解相中的分配系数(lgKp)也自上至下呈递减趋势,说明颗粒物主要是以沉降作用和水平迁移过程为主;水柱下层样品中多环芳烃的lgKp值异常升高,与水柱下层水体的悬浮物质量浓度较高以及盐水入侵(盐水楔)作用有关。   相似文献   

2.
李海燕  段丹丹  黄文  冉勇 《环境科学学报》2014,34(12):2963-2972
分别于2011年4月(春季)和2011年9月(夏季)采集珠江广州河段及东江东莞河段表层水体样品,对该区域表层水体中优控多环芳烃(PAHs)的时空分布、固液分配及其来源进行了分析和讨论.结果表明,珠江广州河段及东江东莞河段表层水体中多环芳烃浓度春季高于夏季.藻类有机碳是该水环境有机碳的主要成分.溶解有机碳(DOC)、颗粒态有机碳(POC)以及叶绿素a(Chl a)含量是控制水体PAHs浓度的主要因素,说明水环境的富营养化程度可以通过增长的浮游生物量来影响多环芳烃的生物地球化学过程,继而影响其环境行为和归宿.多环芳烃在水/颗粒物间的有机碳归一化分配系数(log Koc)与辛醇/水分配系数(log Kow)间存在明显的线性关系,其斜率是夏季大于春季,可能与多环芳烃的非平衡吸附有关.多环芳烃同系物比值法和主成分分析(PCA)的结果表明,研究区域水体中PAHs主要来源于石化燃料、煤和生物质的混合燃烧,并且PAHs的来源未体现出明显的季节变化.通过本研究我们能够比较全面的了解该流域多环芳烃的时空分布状况,固液分配及其可能的来源,并且为珠江广州河段及东江东莞河段多环芳烃污染的控制和生态风险评价提供科学依据.  相似文献   

3.
珠江下游至伶仃洋水体中多环芳烃的相态分布和传输特征   总被引:1,自引:0,他引:1  
为了研究河口水体中多环芳烃(PAHs)的相态分布、传输特征及其变化趋势,本文沿珠江下游至河口对表层水体PAHs进行采样分析。结果显示,16种优控PAHs的总浓度为(17.50~168.35)ng/L,平均83.40 ng/L,其中溶解相为(3.76~83.60)ng/L,颗粒相为(1.59~84.75)ng/L。PAHs浓度自下游至伶仃洋有波动降低的趋势,该趋势受陆源的持续输入、浮游植物的吸附吸收以及海水的稀释作用等因素的共同影响;PAHs组成及两相分配的变化主要受控于输入特征、悬浮颗粒物和黑碳吸附以及盐析效应等环境因子。荧蒽和芘的分配系数Kp自珠江下游至伶仃洋的逐渐下降也说明了海水的稀释显著降低了悬浮颗粒物对PAHs的吸附。另外,特征化合物比值沿程的变化不仅指示了PAHs在广州段水体中较长的停留时间,也说明了虎门河口存在持续的PAHs输入。利用主因子分析和多元线性回归的方法,指示出煤和木材燃烧以及机动车排放是该区域表层水体PAHs污染的最主要来源,约贡献了80%的PAHs输入。  相似文献   

4.
多环芳烃在西江高要段水体中的分布与分配   总被引:5,自引:2,他引:3  
邓红梅  陈永亨  常向阳 《环境科学》2009,30(11):3276-3282
为了解西江流域水体中多环芳烃(PAHs)的深度和季节分布及其在溶解相和颗粒相的分配以及控制因素,分别在洪水期(2003年8月和2004年7月)和枯水期(2003年11月和2004年3月)采集了西江高要段水柱.结果表明,溶解相和颗粒相中PAHs的浓度分别为21.7~138 ng/L和40.9~664.8μg/kg;水体中PAHs的总含量(颗粒相及溶解相),洪水期大于枯水期.在溶解相中,PAHs的浓度随深度无明显规律;而在颗粒物中,PAHs的浓度都表现出相同的变化趋势,即中层水PAHs含量最高,表层水PAHs含量最低.溶解相和颗粒相中PAHs的浓度都随悬浮颗粒物的含量增加而增加.从PAHs组成特点来看,溶解相以3环的PAHs为主,而颗粒相以3~4环的PAHs为主.PAHs在颗粒相及溶解相中的分配系数(KP)不受颗粒有机碳浓度控制(R2为0.000 1~0.2),而受颗粒物浓度、及溶解有机碳浓度的共同影响(R2为0.15~0.36),尤其是溶解态的细小碳黑有机质的影响.西江高要段水体PAHs在不同季节的lgKOC值大部分超过经典平衡分配模型的上限.除了2003年11月(R2为0.000 4~0.12,p0.001)之外,其它3个季节PAHs的lgKOC与lgKOW均有较强的相关性(R2为0.29~0.91,p0.05).洪水期颗粒物的亲脂性强于枯水期.  相似文献   

5.
珠江广州段水体微表层与次表层中多环芳烃的分布与组成   总被引:6,自引:1,他引:5  
2009年3月对珠江广州段微表层与次表层水中多环芳烃(PAHs)的分布与组成进行了研究.结果表明,珠江广州段微表层和次表层水中16种溶解态PAHs浓度为622.0~2132.2ng·L-1,与DOC存在正相关关系;颗粒态为316.7~639.5ng·L-1,与颗粒物浓度存在明显的线性相关;PAHs的组成以2~3环为主,溶解态中2~3环PAHs占总量的86.0%~95.7%,明显高于颗粒态中2~3环PAHs占总量的(68.8%~84.0%)百分比,PAHs的辛醇-水分配系数及其物理化学性质是造成这一差异的主要原因;微表层对PAHs有一定的富集作用,富集因数EF在1.1~1.5之间(溶解态1.2~1.5,颗粒态1.1~1.3).  相似文献   

6.
珠江口及南海近海海域大气多环芳烃分布特征   总被引:3,自引:0,他引:3  
分冬、春两次航次分别采集了珠江口及南海近海海域大气气溶胶样品和气相样品,同时以广州和中山作为陆基对照点,对16种EPA优控多环芳烃进行了分析.结果表明,大气PAHs主要以气态化合物为主,总PAHs(气态+颗粒态)的含量范围为49.6~256.6 ng/m3,平均120.7 ng/m3.珠江口海域大气颗粒态多环芳烃季节变化显著,冬、春航次大气颗粒态多环芳烃的含量分别为6.7~18.0 ng/m3和0.4~5.1 ng/m3,冬季航次期间大气颗粒态PAHs含量的高值主要源于大陆气流对城市群大气PAHs污染的输送,另外干冷的季节亦有利于PAHs向颗粒态的富集.与此相反,气态多环芳烃含量的季节差异不明显.在冬季,随东北季风携带的城市粉尘可以将大气中的气态PAHs捕获,而春季航次的大气PAHs主要来源于西太平洋地区的远程输送和PAHs的海-气交换作用.认为受控于季风活动的水、热因子组合特征,是影响珠江口海域大气PAHs含量与分布的主导因素.  相似文献   

7.
长江口近岸水体悬浮颗粒物多环芳烃分布与来源辨析   总被引:4,自引:0,他引:4  
对长江口近岸水体悬浮颗粒物中的多环芳烃(PAHs)进行了定量分析.结果表明,悬浮颗粒物PAHs总量为2 278.79~14 293.98 ng/g,排污口附近浓度最高,远离排污口浓度降低;就其组成特征而言,以4~6环PAHs为主,2~3环PAHs相对较少.聚类分析表明.除了城市排污外,河口水动力条件也对近岸PAHs分布特征产生一定影响.此外,悬浮颗粒物浓度、有机碳、炭黑含量也是控制近岸PAHs分布的重要影响因素.主成分分析和PAHs特征参数分析发现,近岸水环境中PAHs的主要来源为矿物燃料的不完全燃烧,此外还有少量石油输入.生态风险评价结果显示,大部分PAH化合物均超过ER-L值和ISQV-L值,表明长江口近岸水体悬浮颗粒物中的PAHs已具有不利的生物影响效应.  相似文献   

8.
哈尔滨市大气中多环芳烃的初步研究   总被引:5,自引:1,他引:4       下载免费PDF全文
利用改进型的大流量主动采样器,于2008年5月7~20日对哈尔滨市大气样品进行采集,并检测了气相和颗粒相中的多环芳烃(PAHs)的浓度.结果表明,哈尔滨市大气中总PAHs的浓度为8.1~37.2ng/m3,平均值为18.2ng/m3.通过特征分子比值法推断出哈尔滨市大气中PAHs主要来自于煤的燃烧.低环PAHs主要集中在气相,而高环PAHs则吸附在颗粒相上.气粒分配系数与过冷饱和蒸气压具有很好的相关性,但PAHs并没有达到气粒分配平衡,这可能与冬季取暖用煤燃烧产生的新多环芳烃有关.  相似文献   

9.
城市交通干道降雨径流中PAHs的污染特征   总被引:3,自引:0,他引:3  
以上海、温州市典型交通干道地表径流为研究对象,分析了样品中16种溶解态和颗粒态PAHs浓度,了解了城市交通干道降雨径流中PAHs污染特征及其动态变化过程.结果表明,径流中∑PAHs(包括溶解相、颗粒相)浓度范围为919.8~16711.6ng·L-1,溶解相中PAHs浓度要远低于颗粒相(分别为4.9~1558.0ng·L-1,635.4~16624.0ng·L-1).通过对3场降雨事件中PAHs浓度随降雨过程变化的研究,可以发现并不是所有道路径流都有初期冲刷效应,初期冲刷的产生受雨前干期、降雨强度以及径流量等因素共同作用,因此简单拦截初期径流并不能十分有效地降低PAHs污染负荷.径流中PAHs在颗粒相-水相间的分配系数Kp值为2.3×104~2.5×106L·kg-1,随着悬浮颗粒物含量增加而减少,这可能跟径流过程中颗粒物粒径组成有关.  相似文献   

10.
环境介质中多环芳烃(PAHs)污染的调查研究一直是行业热点,对于大气和土壤中PAHs污染的研究相对较多,但是由于水体环境的复杂性,对水体中PAHs污染研究一直较少,巢湖作为中国五大淡水湖之一,水体的污染情况一直受到广泛关注,其中大多数研究集中在巢湖的水体富营养化问题上,对于水体中PAHs污染的调查分析较少,但是PAHs因其难降解和“致癌致畸致突变”的性质对人体健康会造成潜在威胁,所以对于巢湖水体PAHs污染的分析研究是十分必要的.本文采集了巢湖35个采样点的溶解相和悬浮颗粒物相样品,运用气相色谱-质谱联用仪(GC-MS)测定样品中16种PAHs的浓度,分析了巢湖水体中PAHs的浓度分布和组成特征,利用生态风险墒值法进行生态风险评价,并通过正定矩阵因子分解法(PMF5.0)对样品中PAHs进行来源解析.结果表明,∑16PAHs的浓度范围在溶解相样品中为83.8~174.2 ng·L-1,在悬浮颗粒相样品中的浓度为557.7~4543.9 ng·g-1,平均含量分别为115.2 ng·L-1和2048....  相似文献   

11.
深圳湾生态系统多环芳烃(PAHs)特征及其生态危害   总被引:10,自引:3,他引:10  
2004年在深圳湾海域采集海水、悬浮物、表层沉积物和柱状沉积物样品,并分析其中15种多环芳烃的含量及其相关参数,同时采用210Pb法测定柱状沉积物的年龄.结果表明,海水、悬浮物、表层沉积物和柱状沉积物中总的PAHs含量分别为(69.4±24.7)ng·L-1、(429.1±231.8)ng·g-1、(353.8±128.1)ng·g-1和(321.1±134.6)ng·g-1,各介质优势组分均为菲、荧蒽和芘;1948~2004年期间,深圳湾柱状沉积物中PAH各单体的浓度总体上一直在增加,PAHs的平均沉积通量为89.9ng/(cm2·a);PAH各单体在沉积物/海水中的分配系数(Koc)与其相应的辛醇/水比(Kow)存在明显的正相关性,即可用PAH的Kow值来预测深圳湾海域PAH的Koc.目前,水体与沉积物中PAH含量对该海域的水生生物尚未构成威胁.  相似文献   

12.
多环芳烃在岩溶地下河表层沉积物-水相的分配   总被引:5,自引:3,他引:2  
蓝家程  孙玉川  肖时珍 《环境科学》2015,36(11):4081-4087
利用实测老龙洞地下河水中和沉积物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的实际浓度,获取了溶解相-沉积物中PAHs的分配系数Kp值.研究了老龙洞地下河PAHs在水相和沉积物中的质量浓度变化及其在水相和沉积物间的分配.研究结果表明水相和沉积物中PAHs质量浓度分别为81.5~8 089 ng·L-1,平均值(1 439±2 248)ng·L-1和58.2~1 051 ng·g-1,平均值(367.9±342.6)ng·g-1;PAHs组成均以2~3环为主,但沉积物中明显富集高环PAHs.沉积物-水相Kp值分布在55.74~46 067 L·kg-1范围内,随PAHs环数的增加而增大.沉积物-水相中实测的有机碳分配系数(lg Koc)大部分高于预测值上限,PAHs强烈吸附在沉积物上.lg Koc与正辛醇-水分配系数(lg Kow)呈较好的线性自由能关系(R2=0.75),但其斜率小于1,推测地下河沉积物对PAHs化合物的吸收能力较差.  相似文献   

13.
黄河中下游水体中多环芳烃的分布及来源   总被引:15,自引:5,他引:10  
对小浪底至山东东明段黄河干、支流水、悬浮物和沉积物进行了采样分析.结果表明,干流水相∑15PAHs浓度范围为179~369ng/L,其中除焦巩桥外其它断面苯并(a)芘均超过国家饮用水标准;支流水相浓度均高于相应干流,尤其是富含低环PAHs的孟州一干渠对干流沉积相浓度有较大影响.与水相相比,悬浮、沉积相中PAHs检出种类较多,干流悬浮相∑13PAHs浓度范围为54~155μg/kg,且各环PAHs与悬浮相中TOC含量间存在一定正相关.干流沉积相∑13PAHs浓度范围为31~133μg/kg,其4、5、6环P  相似文献   

14.
多环芳烃在长江口滨岸颗粒物-水相间的分配   总被引:5,自引:2,他引:3  
利用长江口滨岸水环境中颗粒相与溶解相多环芳烃的实测浓度,获取了多环芳烃化合物在颗粒物-水相间的分配系数Kp.结果表明,分配系数Kp值在507~10 179 L/kg之间,枯季高于洪季,随多环芳烃环数的增加而增大;Koc值与辛醇-水分配系数Kow之间存在较好的线性自由能关系(枯季R2=0.82,洪季R2=0.68),推断出长江口滨岸颗粒物亲脂性较差,对多环芳烃的吸收能力相对较弱.长江口滨岸各采样点多环芳烃化合物的lgKoc值均超过了经典平衡分配模型的预测值上限,多环芳烃两相分配行为不受颗粒物浓度、粒径及上覆水盐度、溶解态有机碳的控制(R2<0.1),表现出主要受POC及非均一性混合物PSC共同影响的特点;扩展后的含PSC相的颗粒物-水相分配模型较为准确地模拟了lgKow<6的多环芳烃化合物野外原位分配过程.  相似文献   

15.
广西乐业大石围天坑群多环芳烃的干湿沉降   总被引:10,自引:7,他引:3  
为研究大气多环芳烃(PAHs)的沉降对广西乐业大石围天坑群喀斯特生态环境的影响,选择典型的大石围天坑,采用大气干湿采样器分季节进行了为期1 a(2007-03~2008-03)的大气干湿沉降样品采集,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物.结果表明,大气干湿沉降中PAHs的干湿沉降通量为132.36~1 655.27 ng.(m2.d)-1,平均值为855.00 ng.(m2.d)-1,大石围天坑的PAHs沉降量为51.98 g.a-1;PAHs的组成以苯并[b]荧蒽、、苯并[a]芘、苯并[k]荧蒽、蒽、菲、萘7种为主,占总量PAHs的78.5%;大气PAHs沉降通量的空间分布为东垭口>南垭口>西峰>北垭口;不同季节的沉降通量为春季>夏季>秋季>冬季,春、夏季PAHs沉降通量高于秋、冬季4.6倍,春、夏季以4~6环PAHs为主,而秋、冬季以2~3环PAHs为主;研究区大气PAHs沉降通量与降雨量、风向、风速、温度气象因子及污染源的方位密切相关;大石围天坑群大气PAHs沉降通量在春季、夏季呈季节性增高可能来源于高气温、低海拔的广西工业发达地区.  相似文献   

16.
研究了漳卫南运河流域地表水中USEPA16种优先控制的多环芳烃(PAHs)的分布特征和污染来源,2008年4月、10月水中PAHs总量分别在31.7~74.5ng.L-1、45.3~99.0ng.L-1之间,与国内外其他河流相比,整体处于较低污染水平.四女寺污染最严重;河口污染最轻.整体上看,10月份PAHs浓度比4月份略有增加.从16种多环芳烃单体的组成来看,漳卫南运河PAHs以2环、3环、4环为主.本研究提出了新的∑PAHs生态风险评价方法,结果表明,4、10两个月份最高风险商值(RQ∑PAHs(MPCs))均为0,最低风险商值(RQ∑PAHs(NCs))值分别在34.7~111.0、20.4~88.8之间,平均值分别为58.4、49.8.∑PAHs在7个采样点均呈现低生态风险,且4月份生态风险略高于10月份,风险最高值出现在4月份的四女寺,最低值出现在10月份的河口.源解析结果显示,漳卫南运河流域PAHs的含量和分布主要受煤炭及薪柴燃烧的影响,四女寺和河口地区受到一定的石油污染的影响.  相似文献   

17.
常州市大气PM2.5中PAHs污染特征及来源解析   总被引:3,自引:2,他引:1  
2016年1~8月期间,在常州市采集到55个大气细颗粒物PM_(2.5)样品,采用气相色谱-质谱联用仪测定其中17种PAHs的含量.结果表明,冬、春、夏季PAHs的季均浓度分别为140.24、41.42和2.96 ng·m~(-3),冬季污染较严重,且以4~6环中高分子量化合物为主.Ba P日均浓度平均值3.64 ng·m~(-3),超标日占总采样天数的41%.PAHs浓度与气温(相关系数-0.643)和能见度(相关系数-0.466)显著负相关,与大气压呈显著正相关(相关系数0.544),而与风速、相对湿度相关性较差.受昼夜温差、大气层结和污染源变化等因素影响,夜间PAHs浓度高于白天.气团后向轨迹模型分析表明,常州PM_(2.5)中PAHs主要受当地排放源和短距离传输的影响,长距离传输影响小(仅占11%).特征比值法分析发现,PAHs主要来源于燃煤、机动车尾气和生物质燃烧.利用超额终生致癌风险(ILCR)模型评估PAHs通过呼吸暴露途径对人体健康的影响,结果表明:成人的ILCR值高于儿童,冬季和春季人群的ILCR值略高于风险阈值,夏季则不明显.  相似文献   

18.
松花江干流PAHs的底泥-水交换行为及时空异质性   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解松花江干流底泥和水体中PAHs(多环芳烃)的环境分布行为,应用逸度方法研究了松花江中PAHs的底泥-水交换行为及时空异质性特征. 结果表明:KOW(辛醇-水分配系数)影响PAHs的底泥-水交换行为,并与底泥-水交换的ff(逸度分数)呈显著负相关(R=-0.801,P=0.000),而ff与PAHs的溶解度则呈正相关(R=0.499,P<0.05);高环PAHs的底泥-水交换行为受w(OC)变化的影响较为强烈,w(OC)每提高0.10%,2~6环PAHs的ff降低0.7%~11.0%;春季PAHs的底泥-水交换的ff大于夏季. 低环的Nap(萘)表现出明显的由底泥向水体的迁移行为,Phe(菲)和FlA(荧蒽)几乎接近于平衡状态,而高环的BaP(苯并芘)和BgP(苯并苝)则相反. 夏季PAHs的大气传输及本地排放源的沉降,可能为松花江干流PAHs的主要来源;汇入支流的输入可视为主干河流水体中污染物的另一来源. 水体中2~4环PAHs处于中等变异,5~6环PAHs则表现为强变异;底泥中3~4环PAHs处于中等变异,而其他环数PAHs则呈强变异. 从季节性变化来看,夏季底泥中PAHs的CV(变异系数)相对较大,而春季水体中PAHs的CV则略大于夏季. 研究显示,PAHs物理化学性质的差异,水体中悬浮颗粒物和底泥中w(OC),以及外源性PAHs的输入,均会使不同环数PAHs在水体和底泥中的CV产生较大差异.   相似文献   

19.
岩溶地下河流域水中多环芳烃污染特征及生态风险评价   总被引:13,自引:8,他引:5  
利用气相色谱-质谱联用仪(GC/MS)测定了老龙洞地下河流域水中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,研究了流域内PAHs组成、污染水平,并对其进行了生态风险评价.结果表明,老龙洞地下河水中ΣPAHs含量变化范围为81.5~8 019 ng·L-1,表层岩溶泉ΣPAHs含量为288.7~15200 ng·L-1,地表水ΣPAHs含量为128.4~2 442 ng·L-1;受黄桷垭镇污水的影响,地下河水相对于地下水补给来源的落水洞和地表水含量较高.流域内水中PAHs均以低环为主,尤其是3环占主导.受污水、季节的影响及PAHs物理化学性质的差异,水中PAHs月变化呈现不同的变化特征.地表水、落水洞污水排放对地下河PAHs来源起重要作用.流域内水中PAHs以低环污染为特征,所有检测到的PAH化合物处于中等污染和重污染风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号