首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
半干旱地区黑碳气溶胶和含碳气体特征及来源   总被引:3,自引:0,他引:3       下载免费PDF全文
利用2009年9月~2010年6月兰州大学半干旱气候与环境观测站(SACOL)多角度吸收分光光度计(MAAP-5012)观测数据、CO和CO2气体成分混合比数据,分析了西北半干旱地区黑碳气溶胶和含碳气体特征、影响源地,以及影响黑碳浓度的排放物类型.结果表明BC、CO、CO2平均浓度分别为1.75μg/m3、601.71×10-9、387.78×10-6.利用后向轨迹模式将从观测站西部和东部输送过来的气流区分开,气流从东部来时,BC、CO、CO2浓度分别为1.38μg/m3、462.79×10-9、383.03×10-6;气流从西部来时,BC、CO、CO2浓度分别为2.2μg/m3、768.38×10-9、393.47×10-6.对500m、1500m、3000m高度气流来向的发源地进行聚类分析,发现3个高度上气流从中东、中亚及欧洲区域传输过来时,BC、CO、CO2浓度较高,△BC/△CO、△CO/△CO2值较大,说明燃料燃烧效率较低;气流从我国华北华中地区传输过来时,BC、CO、CO2浓度较低,△BC/△CO、△CO/△CO2值较小,表明燃料燃烧效率较高.  相似文献   

2.
北京上空气溶胶浓度垂直廓线特征   总被引:2,自引:1,他引:1  
利用2008-2010年北京地区3.5 km高空内飞机探测的气溶胶(粒径范围为0.10 ~3.00 μm)数据,分析了该地区气溶胶的时空分布特征.结果表明:①气溶胶浓度(以数浓度计,下同)均随高度增加而减小,在1.5 km以上高空的气溶胶浓度垂直梯度变化明显低于1.5 km以下的垂直梯度变化.4-11月气溶胶浓度季节变化表现为夏季最高、秋季次之、春季最低.②气溶胶浓度廓线逐时(09:00-19:00)变化较清晰地反映出其受大气边界层演变的影响.在0~1.5 km高空,白天气溶胶浓度高值出现在09:00-11:00,低值出现在13:00-14:00;而在1.5 ~3.5 km高空的气溶胶浓度时段分布与其相反.③人为活动是影响气溶胶浓度区域水平分布的重要因子.④将气溶胶浓度廓线垂直分布分为a、b、c3类.类型a的近地面气溶胶浓度(0~4 000 cm-3)低,垂直方向上变化很小;类型b的近地面气溶胶浓度(4 000 ~9 000 cm-3)较高,垂直递减明显;类型c的近地面气溶胶浓度特别高,量级达到104 cm-3,并在大气边界层顶(约1.5 km)附近迅速递减.北京地区气溶胶浓度廓线以类型b居多.  相似文献   

3.
2018年12月15~18日使用激光雷达在河北望都观测气溶胶与O3,利用气溶胶消光系数廓线判断边界层的变化,进而研究大气边界层对于近地表层(300m)O3浓度的影响.结果表明,边界层主要影响O3的干沉降以及高空O3的垂直输送,在受本地污染控制时,近地表O3浓度受干沉降控制明显,随着边界层高度的下降而减少;西北地区气团占主导时,O3浓度主要受水平传输以及高空垂直输送影响.  相似文献   

4.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

5.
2016冬季京津冀一次持续重度霾天气过程分析   总被引:1,自引:1,他引:0       下载免费PDF全文
毛曳  张恒德  朱彬 《环境科学》2021,42(8):3615-3621
2016年12月16~21日我国京津冀地区发生了一次持续重度霾天气过程.为了进一步加深对霾的认识和提高对霾的分析预报能力,利用多种资料,对此次重度霾天气过程的环流背景和气象要素等进行了综合性分析.结果表明,此次过程持续时间长,污染强度大,影响范围广,能见度低,以外来输送为主,气溶胶主要分布在600 m以下高度,有一定的极端异常性,静稳天气指数与空气质量指数有较好的对应关系;京津冀地区高空受高压脊前的纬向环流控制,维持偏西气流,冷空气活动弱,以下沉气流为主,水汽含量较低,高空云量较少,低空有暖脊北伸,地面位于高压东南部,受均压场控制,气压梯度较小,受偏南风影响,污染物易于堆积;地面静小风,相对湿度较高,混合层高度较低,不利于污染物的水平和垂直扩散.  相似文献   

6.
为了解深圳地区黑碳气溶胶(BC)的污染特征,使用深圳市西涌(XC)站点(郊区)和竹子林(ZZL)站点(城区)2014年1月1日~2015年6月30日测得的BC浓度及常规气象资料,对比研究了深圳地区两个不同代表性站点的BC变化特征.结果表明:在观测期间,郊区XC和城区ZZL站点BC小时平均浓度分别为(1.12±0.90),(2.58±2.00)μg/m3,本底浓度分别为(0.27±1.31),(1.07±0.85)μg/m3,气溶胶吸收系数σabs分别为(5.87±4.81),(13.47±10.50) Mm-1,城区站点值均高于郊区站点.两站点BC浓度分布均为对数正态分布,且都呈现干季高、湿季低的季节变化特点.日变化分析表明ZZL站点BC浓度呈现明显的双峰结构,XC站点日变化不明显.通过计算两地的气溶胶波长吸收指数AAE值,发现两地AAE值均接近1,说明两地BC污染主要来源于化石燃料的燃烧.进一步分析可知XC站点西北方向32km处是世界第三大集装箱码头,当西北风达到一定程度时(10~20m/s),码头排放的污染物将严重影响XC站点的BC浓度.后向轨迹聚类分析结果表明,XC站点主要受中远距离输送影响,ZZL站点主要受周边及本地污染源排放影响.  相似文献   

7.
针对2012年珠江三角洲地区出现的2个典型灰霾个例(3月18~21日,10月13~15日),利用广州番禺大气成分综合观测基地的同期观测资料集,包括:能见度(VIS)、大气颗粒物质量浓度(PM10/PM2.5/PM1)、黑碳浓度(BC)等观测数据,分析过程中的气溶胶物理光学特征;配合过程的天气类型,气象要素和后向气流轨迹等对过程的成因进行综合分析.结果表明:在两个典型灰霾过程中,番禺日均能见度低至5.3km,黑碳浓度小时均值最高达19.0μg/m3、PM2.5浓度小时均值最高达163.0μg/m3,细粒子与黑碳粒子污染特征较为明显.两次典型灰霾过程分别受到冷锋前-均压场-冷锋前天气形势和台风外围-准均压场-冷锋前天气类型等不利于污染物输送扩散的气象条件影响.珠江三角洲地区低能见度的霾天气主要发生在高相对湿度的条件下,并可推断在珠江三角洲地区湿季的气溶胶吸湿能力明显高于干季.  相似文献   

8.
利用2013年至2015年北京城区黑碳气溶胶(下文统称为"BC")和PM2.5观测资料,结合地面气象观测资料、ECMWF边界层高度再分析资料和FNL/NCEP不同高度风速再分析资料,讨论了BC质量浓度及其在PM_(2.5)质量浓度中所占比例(下文统称"黑碳占比")的季节、月、日变化特征,并通过计算北京城区BC浓度与不同高度风速的相关矢量,分析了气象条件和外来输送对北京城区BC浓度变化的影响.结果发现:研究时段内北京城区BC浓度平均值为(4.77±4.49)μg·m~(-3);黑碳占比为8.23%±5.47%.BC浓度和黑碳占比在春、夏季低,秋、冬季高,其日变化特征在4个季节均为"白天低夜间高"的单峰型特征.随着PM_(2.5)浓度的升高,BC浓度增大,黑碳占比减小.当北京地区风向为东北、东北偏东、东南和西南偏西(主风向)时,BC浓度与风速和边界层高度均呈反向变化,即随风速和边界层高度的增大而减小.另外不同季节BC浓度随风速变化的临界值及其变化速率不同.冬季高BC浓度时段,北京城区BC浓度在低层大气的关键影响区分别位于河北南部与山东交界地区以及河北西北部与山西内蒙交界地区;高空关键影响区主要位于北京以西的河北西部、山西北部和内蒙古地区.  相似文献   

9.
山西夏季气溶胶空间分布飞机观测研究   总被引:2,自引:0,他引:2  
以搭载了多种气溶胶观测仪器的飞机为观测平台,在2013年夏季首次对山西中部地区霾日及晴空大气气溶胶空间分布特性进行了观测,得到气溶胶粒子数浓度和尺度的垂直分布廓线以及不同高度气溶胶粒子谱分布特征.研究发现,山西夏季非降水天气条件下气溶胶粒子以核模态和积聚模态的细粒子为主,粗粒子很少.霾日气溶胶数浓度是晴空的2~3倍,主要是核模态的小粒子;气溶胶粒子数浓度随着高度逐渐减小,低空存在气溶胶累积区,逆温层的存在是导致气溶胶累积区形成的主要原因;气溶胶粒子尺度随高度增加,大粒子主要分布在2500m以上的高空;不同高度上的气溶胶粒子谱均呈双峰或三峰分布,谱型基本一致,从近地面到5000m高空,气溶胶粒子谱随高度的增加略有展宽.观测区域气团后向轨迹模拟结果显示,4000m以上高空气溶胶粒子主要是从中国西北地区远距离输送而来,3000m以下气溶胶粒子则主要来源于近地面排放.  相似文献   

10.
针对2020年5月11~12日华北平原出现的一次沙尘过程,使用云高仪和空中国王-350飞机观测平台观测了气溶胶后向散射系数、气象要素、黑碳气溶胶(BC)和0.1~3.0μm气溶胶粒径分布的垂直结构,并结合FY-4A卫星数据、大气污染物数据(PM2.5、PM10、SO2、NO2、CO和O3)、地面气象数据和探空数据,探究了此次沙尘过程中大气污染物和边界层结构的相互作用机制.结果表明,由于逆温层的存在,沙尘在石家庄上空维持在>1km的高度,因此对地面污染物的影响较小.沙尘期间石家庄PM10的平均质量浓度为166.3μg/m3,分别是沙尘前和沙尘后的2.7倍和1.5倍.沙尘过程对边界层结构影响较大.沙尘期间在沙尘层附近形成一层RH较小、风速较大、气溶胶含量较高的“穹顶”结构,阻碍了大气边界层的发展.“穹顶”结构使得贴地逆温消失,有利于近地面污染物的扩散.沙尘层内BC和气溶胶数浓度较高,最大浓度接近地面观测浓度.沙尘过程对不同高度气溶胶数浓度谱谱型影响较小,沙尘层使得0.4~3μm气溶胶数浓度显著增加.  相似文献   

11.
本溪大气黑碳气溶胶浓度的观测研究   总被引:1,自引:0,他引:1  
对2008年3月至2009年2月本溪黑碳气溶胶浓度观测资料进行了研究分析.结果表明,本溪黑碳平均浓度值为6.877 μg/m3,日平均浓度变化范围为0.592~20.577 μg/m3,每小时平均浓度最大值达64.518 μg/m3;黑碳浓度具有明最的季节变化,夏季的平均浓度最低,最高值出现在冬季的1月份,这与冬季取暖...  相似文献   

12.
杭州黑碳气溶胶污染特性及来源研究   总被引:5,自引:0,他引:5  
2011年7月~2012年6月对黑碳气溶胶(BC)、PM2.5、污染气体及气象因子进行同步观测,以评估杭州市BC污染特征、来源分布及对大气能见度的影响.结果表明:杭州市大气BC日均浓度范围为1.3~16.5μg/m3,年均值达到(5.1±2.5)μg/m3.BC呈明显的季节变化趋势,秋冬季高,夏季低.BC也呈典型的日变化趋势,交通高峰期高,下午低,同时与NOx呈较好的相关性,表明城市中BC受到机动车尾气排放的重要影响;而BC/CO低于其他城市则表明生物质燃烧排放可能是杭州BC的另一大重要来源.BC随风速下降呈上升趋势, BC超过10μg/m3的高浓度事件中,风速基本低于2m/s,北-西北-西风对高浓度BC的输送作用明显.观测期间BC的吸收系数为(44.8±23.0)Mm-1,占到总消光比例的10.4%.灰霾和重度灰霾天气下,吸收系数分别为(66.2±30.1),(100.2±49.2)Mm-1,达到非霾天气的2.2和3.4倍, 表明BC吸收消光作用是影响杭州市大气能见度下降和灰霾天气发生的重要因素之一.  相似文献   

13.
利用能分别代表珠江三角洲草地、城市绿地及地带性森林植被生态系统的番禺站、东莞站和鼎湖山站CO2净通量资料对CT-2010碳源汇反演模式系统进行了验证,并利用该模式初步分析了区域净碳通量的时空分布及不同生态系统的碳汇特征.结果表明: CT-2010模式模拟的珠江三角洲城市绿地、地带性植被、以及草地生态系统碳通量与站点观测结果具有较好的一致性,其拟合相关系数(r)高于0.60(P<0.01),小时、逐日、日变化的残差均值低于2.0μmol/(m2?s);模式一定程度上能反映3种生态系统碳通量的季节分布特征,但各月的模拟值均高于观测值,其中对城市绿地生态系统的模拟最接近,残差年均值为0.964μmol/(m2?s),对草地和地带性森林植被生态系统的模拟效果相当,残差年均值分别为 2.056,2.100μmol/(m2?s);2004~2005年期间珠江三角洲地区近地层净碳通量为3.43μmol/(m2?s),其中冬季最强,为1.4μmol/(m2?s),春季次之,为1.35μmol/(m2?s),秋季和夏季最低,分别为0.51和0.18μmol/(m2?s);在冬、春两季,珠江三角洲区域为强的碳源区,而在夏、秋季,粤北和粤东大部分地区为较弱碳汇区;2004~2005年期间珠江三角洲地区陆地生态系统的碳汇为-6.5×10-3PgC,其中农作物,草地/灌木,常绿针叶/阔叶混合林是吸收CO2的主要生态系统,其净通量占陆地生态系统的比率分别为42.01%,31.46%和26.53%.  相似文献   

14.
广州市PM_2.5和PM_1.0质量浓度变化特征   总被引:4,自引:1,他引:3  
文章报道了2005年干季和2006年湿季广州市大气细粒子PM2.5和PM1.0质量浓度的实时监测情况。监测结果表明:干季监测点PM2.5日均质量浓度在11.8~164.0μg/m3之间,总平均值为81.7μg/m3;湿季日均质量浓度在19.9~121.2μg/m3之间,总平均值为57.7μg/m3。干季PM1.0日均质量浓度变化范围为14.9~129.1μg/m3,总平均值为59.4μg/m3;湿季日均质量浓度在11.9~86.7μg/m3之间,总平均值为52.9μg/m3。对比发现,PM1.0总平均质量浓度在干、湿季相差很小,且与湿季PM2.5总平均质量浓度也相差不大,显示PM1.0具有相对固定成因来源且基本不受季节变化影响,而且湿季PM2.5的组成主要由PM1.0大气细粒子构成。干季PM2.5和PM1.0质量浓度日变化特征呈明显夜间高、白天低的特点,质量浓度的最大值都出现在晚上21:00左右;湿季由于雨水频繁,没有明显的日变化特征。气象分析表明,干季大气细粒子质量浓度主要受冷空气影响,而湿季主要受降雨影响。  相似文献   

15.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   

16.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   

17.
无锡市大气PM_(2.5)中黑碳的粒径分布与混合态特征   总被引:1,自引:0,他引:1  
针对长江三角洲地区PM2.5中的重要组分黑碳(BC)气溶胶,2010~2011年利用单颗粒黑碳光度计(SP2),对江苏省无锡市夏冬两季BC气溶胶的质量浓度、粒径分布及单颗粒混合态进行了连续在线观测.结果表明,无锡市冬季BC质量浓度(6.1μg/m3)是夏季(2.5μg/m3)的2.4倍,内混态BC比例(NIB)冬季(64.8%)也显著高于夏季(44.6%),说明冬季BC污染与来外来污染传输有关.反向轨迹分析表明,来自华北平原的污染气团输入是冬季高浓度BC污染的首要原因.NIB的日变化趋势与BC质量浓度的完全相反.午后BC质量浓度最低时NIB最高,反映了二次光化学产物包覆在BC颗粒外层的老化过程.此外,夏冬两季BC粒径分布保持稳定,其质量浓度峰值对应粒径在225nm左右,数浓度峰值对应粒径在120nm左右.  相似文献   

18.
2008北京残奥会期间大气黑碳气溶胶污染特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用单颗粒黑碳光度计(SP2)对2008年残奥会期间北京市黑碳(BC)气溶胶的质量浓度、粒径分布及单颗粒混合态进行连续在线观测.结果表明:观测期间BC浓度均值为1.65μg/m3,低于往年同期水平;质量粒径分布呈单峰型,峰值位于207nm;内混态BC比例平均为56.1%,高于其他国内外城市,说明本地源排放贡献相对较小.随大气边界层高度及本地源排放变化,BC浓度在上午8:00和午夜0:00出现2个峰值,内混态BC比例日变化趋势与之相反.风向风速分析表明,残奥会期间来自五环外未限行区域的机动车排放对市区BC浓度有明显影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号