首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
实验采用SBR工艺,在限氧曝气条件下,研究自养亚硝化(进水中不含有机碳)过程中N_2O的释放特征。结果表明,在限氧自养亚硝化过程中,不同进水氨氮浓度条件下的溶解氧浓度均为(0.08±0.02)mg/L,氨氧化速率基本不受氨氮浓度变化的影响,即自养亚硝化反应呈零级反应。进水氨氮浓度为60,120,240 mg/L时的N_2O释放总量分别为3.24,8.75,24.59 mg/L,相应的N_2O释放因子依次为0.12、0.17和0.22。限氧曝气条件下,氨氧化菌(AOB)反硝化产生N_2O占主导作用。进水氨氮浓度越高时,亚硝化过程需时越长,后期NO-2-N累积量越大,导致AOB反硝化产生N_2O的速率越大,N_2O释放总量和释放因子(N_2O释放量/NH+4-N去除量)也越大。  相似文献   

2.
间歇曝气模式下曝气量对短程硝化恢复的影响   总被引:4,自引:4,他引:0  
采用SBR反应器在间歇曝气模式下对搁置2个月的短程硝化污泥进行恢复,控制曝气量分别为120、100、80和60L·h-1,在温度为25℃、交替好氧/缺氧时间比为30 min/30 min条件下处理实际生活污水,进水氨氮浓度为50~80 mg·L~(-1),出水氨氮浓度分别在第12、18、21和21周期之后稳定在5 mg·L~(-1)以下,氨氮去除率均高达95.00%左右;第30、35、38和42周期时,亚硝氮积累浓度分别达到20.83、22.81、21.50和20.73 mg·L~(-1),硝氮出水浓度均低于0.5 mg·L~(-1),亚硝积累率均高于99%,氨氧化菌(AOB)活性最终均稳定在100.00%左右,而亚硝酸盐氧化菌(NOB)活性逐渐被抑制,4种曝气量下均成功实现了短程硝化的恢复.  相似文献   

3.
杨玉兵  杨庆  李洋  周薛扬  李健敏  刘秀红 《环境科学》2018,39(11):5051-5057
在常温条件下,采用批次试验结合同位素分析技术,研究不同溶解氧(DO)浓度下短程硝化过程N_2O的释放量及产生途径.结果表明,不同溶解氧条件下,N_2O的释放量与NO_2~--N浓度显著相关,当NO_2~--N浓度大于3 mg·L~(-1),短程硝化过程开始出现N_2O的释放,且随着NO_2~--N浓度的增加而增加.当溶解氧浓度分别为0. 5、1. 5和2. 5 mg·L~(-1)时,N_2O的释放量占进水总氮的比例分别为4. 35%、3. 27%和2. 63%,随着溶解氧的升高,N_2O的释放量占进水总氮的比例降低.短程硝化过程控制溶解氧在2. 5 mg·L~(-1),既可以提高比氨氧化速率,又可以减少N_2O的产生.同位素测定结果表明,当溶解氧为0. 5 mg·L~(-1)时,只有AOB反硝化过程生成N_2O.但当溶解氧升至1. 5 mg·L~(-1)时,有4. 52%的N_2O通过NH_2OH氧化过程生成,AOB反硝化过程生成的N_2O占95. 48%.继续升高溶解氧到2. 5 mg·L~(-1)时,NH_2OH氧化过程生成的N_2O比例增加至9. 11%,AOB反硝化过程生成的N_2O占90. 89%,溶解氧浓度的改变会影响短程硝化过程N_2O的产生途径,避免过高的NO_2~--N积累,可以减少N_2O的产生.  相似文献   

4.
高浓度游离氨冲击负荷对生物硝化的影响机制   总被引:4,自引:4,他引:0  
季民  刘灵婕  翟洪艳  刘京  苏晓 《环境科学》2017,38(1):260-268
工业废水厂或含工业废水较多的城市污水处理厂,在运行过程中可能会意外受到高浓度氨氮废水急性冲击负荷的影响,造成生物硝化反应受到抑制,出水不能稳定达标.为了指导实际污水处理厂应对游离氨(FA)急性冲击负荷造成的出水不达标问题,本文探究高浓度氨氮废水对污水生物硝化系统的影响机制.本文利用序批式活性污泥反应器(SBR)处理模拟高氨氮废水,通过监测氨氮最大比降解速率、硝酸盐氮最大比生成速率、亚硝化和硝化比耗氧速率,硝化菌丰度等指标,研究高浓度氨氮废水中FA对硝化菌活性的影响规律.结果表明,FA在低浓度范围内,增加FA急性负荷能够促进硝化活性,而当FA急性冲击负荷大于一定值时,会对硝化作用造成抑制;FA浓度越大,受到抑制的硝化生物活性所需要的恢复周期越长.利用荧光原位杂交分析技术,发现当进水FA浓度(以N计)从3.6 mg·L~(-1)升高到8.1 mg·L~(-1)时,氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)菌群数量都略微升高,而当FA浓度大于8.1 mg·L~(-1)时,AOB和NOB菌群数量明显下降.FA对AOB和NOB菌群的临界抑制浓度分别为8.1 mg·L~(-1)和6.6 mg·L~(-1),NOB相对于AOB菌群更敏感.  相似文献   

5.
为提高化肥废水的脱氮效率,试验采用间歇曝气SBR(IASBR)和连续曝气SBR(CASBR)控制模式,考察常温条件下(16~26℃)化肥废水的短程硝化脱氮特性.稳定运行阶段COD去除率均达90%以上,IASBR和CASBR平均氨氮去除率分别为93.8%和87.2%,亚硝酸盐累积率分别为72.6%和65.6%.短程硝化动力学分析显示,IASBR和CASBR的NH_4~+-N和NO_2·--N最大比硝化速率之比分别达到了830:1和16:1.通过研究间歇曝气不同厌氧时间条件下的短程硝化效果,试验发现厌/好氧时间为20/40min时,短程硝化能力最强.间歇曝气的厌氧阶段能够强化AOB的活性表达,从而提高化肥废水的氨氮去除率和短程硝化性能.另外,系统中游离氨浓度(1.3~7.5mg/L)也是快速实现短程硝化的关键参数.  相似文献   

6.
游离氨(FA)对氨氧化过程氨逃逸影响试验   总被引:1,自引:1,他引:0  
孙洪伟  于雪  尤永军  彭永臻  王淑莹 《环境科学》2017,38(12):5169-5173
为探究高游离氨(FA)对氨氧化过程氨逃逸的影响.本试验采用序批式活性污泥反应器(SBR),以短程硝化污泥为研究对象,基于批次试验,考察不同FA浓度梯度下,氨氧化过程氨逃逸的变化规律.结果表明,当0.62 mg·L~(-1)FA7.7mg·L~(-1)时,水中游离态氨(NH_3)和水分子(H_2O)结合,生成较稳定的NH_3·H_2O,几乎未发生氨逃逸.当FA浓度较高时(FA687.1 mg·L~(-1)),氨氮未被氧化成氧化态氮[曝气结束时氧化态氮(NO_x~--N)浓度0.1 mg·L~(-1)],但总氮(TN)损失量却达到了269.7 mg·L~(-1),因此,NH_3·H_2O通过挥发作用使得NH_3从水中逸出.在较高FA浓度条件下,氨根离子(NH_4~+)会以NH_3形式被吹脱,从而发生氨逃逸.在226.6 mg·L~(-1)≤FA≤711.8 mg·L~(-1)范围内,氨逃逸速率(FEV)随着FA浓度的增加而增加.  相似文献   

7.
乔昕  王博  郭媛媛  彭永臻 《环境科学》2020,41(8):3765-3772
有效抑制亚硝酸盐氧化菌(NOB)是实现稳定短程硝化的关键.使用运行方式为厌氧/好氧/缺氧(A/O/A)的SBR反应器,探究羟胺(NH_2OH)对氨氧化菌(AOB)和NOB的竞争性选择.在混合液NH_2OH浓度分别为3 mg·L~(-1)和5 mg·L~(-1)条件下采用不同处理频率观察短程硝化的启动情况.结果表明,每2个周期投加1次混合液浓度为5mg·L~(-1)的NH_2OH时,亚硝态氮积累率(NAR)在6 d内从0.1%增长到57.4%,并保持在(62.0±4. 6)%至实验结束;通过分析第6 d的典型周期中可以看出:好氧阶段结束时,氨氮浓度由26. 05 mg·L~(-1)降至8. 06 mg·L~(-1),同时生成9.02 mg·L~(-1)的亚硝态氮和6.70 mg·L~(-1)的硝态氮;AOB最大活性(rAOB)与NOB最大活性(rNOB)的比值从第1 d的1.05增长到第9 d的4.22;通过进一步qPCR分析可以看出:实验第9 d时, AOB与NOB丰度分别下降至处理前的30. 2%和19. 1%.因此,基于NH_2OH对AOB和NOB的竞争性选择有望为城市污水短程硝化的快速启动提供可能.  相似文献   

8.
通过模拟A/O污水处理工艺,文章研究了不同的进水氨氮(NH_4~+-N)浓度下,实现亚硝态氮(NO_2~--N)稳定累积的过程和机理,并对其进行反应动力学分析。结果表明,反应器进水NH_4~+-N浓度从40 mg/L开始,100、200、400、600、800 mg/L,最终浓度提高到1 000mg/L的梯度变化下,氨氧化速率的下降比率最高为36.4%、亚硝酸盐氧化速率的的下降比率最高为96.0%,对亚硝酸盐氧化菌活性抑制效果显著。1 000 mg/L进水NH_4~+-N浓度下NO_2~--N累积速率随溶解氧(DO)升高而提高,DO超过4.5 mg/L时NO_2~--N累积速率接近最大值,但结合实际经济效益与工程实践考虑DO取3.0~3.5 mg/L之间实现短程硝化效果最佳。使用莫诺模型拟合氨氧化菌(AOB)动力学行为,进水NH_4~+-N浓度从40 mg/L提高到1 000 mg/L,反应器最大NH_4~+-N比氧化速率由0.23 d~(-1)上升到0.74 d~(-1),AOB利用底物更快。  相似文献   

9.
温度对间歇曝气SBR短程硝化及硝化活性的影响   总被引:2,自引:2,他引:0  
刘宏  彭永臻  卢炯元  李慧  南彦斌  王瑾  陈永志 《环境科学》2017,38(11):4656-4663
采用SBR反应器处理实际生活污水,单周期分别交替4次(30℃)和7次(18℃)好氧/缺氧模式,好氧/缺氧时间比为30min/30 min.进水氨氮和亚硝氮浓度为61.44 mg·L~(-1)和0.77 mg·L~(-1),分别运行61和90周期时,出水氨氮分别为0.68mg·L~(-1)和1.28 mg·L~(-1),氨氮去除率高达98.94%和99.57%;亚硝氮积累浓度达到20.57 mg·L~(-1)和20.18 mg·L~(-1),亚硝氮积累率分别达到95.92%和99.58%.在实现短程硝化过程中,氨氧化菌(AOB)活性逐渐增加最后稳定在100.00%左右,而亚硝酸盐氧化菌(NOB)活性先增加后逐渐降低,分别在32和74周期时,AOB活性超过NOB活性,AOB成为优势菌种,61和90周期时NOB活性被完全抑制.  相似文献   

10.
许静怡  杜俊  杨一烽  吕锋  夏四清 《环境科学》2018,39(8):3767-3774
分别采用SBR反应器和MBR反应器驯化培养亚硝化污泥和厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)污泥,并通过微生物包埋技术将两类污泥分别包埋,构建亚硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN/A)双菌层系统.短期实验证明该系统中亚硝化菌(ammonia oxidizing bacteria,AOB)和ANAMMOX菌在不同阶段分别起主导作用,维持系统的酸碱平衡,并实现NH+4-N的高效去除(98.8%).长期实验表明,在溶解氧受限时,PN/A双菌层系统能够有效提高系统对溶解氧的利用效率,并增强系统的稳定性和脱氮效能.在溶解氧为1.0 mg·L~(-1),进水NH+4-N质量浓度分别为200 mg·L~(-1)和400 mg·L~(-1)时,对照组脱氮效率仅为58.1%和61.4%,而PN/A双菌层系统脱氮效率均稳定在80%左右;溶解氧为3.0mg·L~(-1),进水NH+4-N质量浓度为400 mg·L~(-1)时,PN/A双菌层系统总氮去除率达87.9%,总氮积累负荷(NLR)为0.4kg·(m3·d)-1,总氮去除负荷(NRR)为12.8 mg·(g·h)-1.  相似文献   

11.
盐度对好氧颗粒污泥硝化过程中N2O产生量的影响   总被引:2,自引:1,他引:1  
王珊珊  梁红  高大文 《环境科学》2014,35(11):4237-4243
采用好氧SBR反应器,考察盐度在0、5、10 g·L-1条件下好氧颗粒污泥全程硝化过程中N2O产生量的变化情况以及对系统脱氮效果的影响.结果显示,随着污水中盐度增加,N2O产生量呈递增趋势.在3个盐度下(0、5、10 g·L-1),溶解态N2O产生量分别为1.21、8.99、24.81 mg·m-3,释放态N2O产生量分别为0.95、3.46、16.45 mg·m-3.在盐度为5 g·L-1和10g·L-1条件下,N2O释放速率分别为0 g·L-1时的3.6倍和17.4倍.在3种盐度条件下无论是溶解态N2O还是释放态N2O产生量在硝化过程的变化趋势均是先上升后下降,且溶解态N2O产生量大于释放态产量.另外当盐度浓度较低时(低于5 g·L-1),对NH+4-N去除效果影响较小,NH+4-N的去除率与盐度为0 g·L-1时基本相同,均在98%以上;但当盐度升至10 g·L-1后,NH+4-N的去除率降到了70%.因此,污水中盐度增加不仅影响NH+4-N的去除效率,而且增加N2O产生量.  相似文献   

12.
为了考察不同污泥浓度(MLSS)下缺氧游离亚硝酸(FNA)对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的抑制影响,采用序批式反应器(SBR),基于4种MLSS(8 398、11 254、15 998和19 637 mg·L~(-1))的全程硝化污泥条件下,通过批次试验深入研究4种MLSS下的全程硝化活性污泥经过缺氧FNA(初始浓度为1. 3 mg·L~(-1))处理48 h后,AOB和NOB活性的变化情况.结果表明,缺氧FNA处理活性污泥48 h后,p H值升高0. 9左右,NO2--N浓度并未明显下降;过曝气下,NH4+-N浓度逐渐降解至0 mg·L~(-1),NH4+-N去除速率逐渐升高至4. 4~6. 8 mg·(L·h)-1,并随着抑制MLSS的升高,其所用时越短;抑制MLSS为8 398、11 254、15 998和19 637 mg·L~(-1)时,分别过曝气0~396、0~396、0~372和0~168 h内,亚硝酸盐累积率(NAR)均大于92%,当分别曝气至468、468、444和264 h时,NO2--N浓度和NAR分别降为0 mg·L~(-1)和0%,NO3--N浓度均升高至最高,其值分别为42. 6、49. 9、42. 9和47. 9 mg·L~(-1).  相似文献   

13.
白洋淀沉积物氨氮释放通量研究   总被引:10,自引:3,他引:7  
白洋淀沼泽化趋势不断加重,本文分析了沉积物氨氮释放风险与水质效应,评估沉积物中氨氮交换通量对上覆水体水质产生的重要影响.结果表明:白洋淀淀区表层水氨氮(NH_4~+-N)平均浓度在0.0~0.49 mg·L~(-1)之间,硝氮(NO_3~--N)平均浓度维持在0.09~0.20 mg·L~(-1),总氮(TN)浓度范围为1.40~4.52 mg·L~(-1),淀区水质在V类水平和劣V类水平.沉积物NH_4~+-N的平均含量在61.1~160.6 mg·kg~(-1),NO_3~--N含量整体平均值较低,范围在4.3~9.0 mg·kg~(-1),TN含量平均值在1555~4400 mg·kg~(-1)之间.整个白洋淀淀区表层沉积物孔隙水中NH_4~+-N浓度明显高于上覆水浓度,NH_4~+-N存在从沉积物向上覆水释放的风险.淀区沉积物-水界面潜在NH_4~+-N扩散通量范围为-9.3~38.3 mg·m~(-2)·d~(-1),NH_4~+-N潜在内源释放风险非常高.烧车淀区、南刘庄区、圈头区的潜在NH_4~+-N平均释放通量达到10.0 mg·m~(-2)·d~(-1)以上.为了避免白洋淀沼泽化过程加快,水质氮污染需要采取相应措施进行有效控制,而控制沉积物NH_4~+-N的内源释放是其中的关键环节.  相似文献   

14.
生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响   总被引:2,自引:0,他引:2  
王宁  黄磊  罗星  梁岩  王燕  陈玉成 《环境科学》2018,39(10):4505-4511
尽管增加曝气会提升潜流人工湿地中溶解氧(DO)浓度,改善污染物去除效果,但由于湿地中氧扩散条件差,易引起DO分布不均,导致氧化亚氮(N_2O)的排放.生物炭由于孔隙率大、比表面积大,近年来逐渐被应用于传统湿地系统,实现强化脱氮和温室气体减排.为了探讨生物炭对曝气潜流湿地的影响,本实验在温室内构建曝气生物炭潜流湿地(SW),以常规曝气潜流湿地(CW)作为参照,探究生物炭投加对湿地系统脱氮性能及N_2O排放的影响.结果表明,SW系统曝气段平均DO浓度为2.66 mg·L~(-1),较CW提高了0.42 mg·L~(-1).SW系统平均出水NH_4~+-N和总氮(TN)浓度为0.17 mg·L~(-1)和1.98 mg·L~(-1),去除率分别达到99.5%和95.0%,较CW提高了5.1%和6.9%.生物炭的投加对湿地系统有机物污染去除效果无显著影响(P0.05),出水化学需氧量(COD)稳定在25 mg·L~(-1),去除率达到94.0%.SW系统中N_2O的平均释放速率为0.27 mg·(m~2·h)~(-1),较CW系统降低了70.7%.因此,生物炭投加可作为一种有效的控制手段来强化曝气湿地系统脱氮,实现N_2O气体减排.  相似文献   

15.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

16.
生活污水预沉淀-SNAD颗粒污泥工艺小试   总被引:1,自引:1,他引:0  
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   

17.
基于CANON工艺的新型HABR反应器生物脱氮性能研究   总被引:2,自引:1,他引:1  
鲍林林  陈婉秋 《环境科学》2016,37(7):2639-2645
采用新型复合式折流板反应器(HABR)启动及运行全程自养脱氮(CANON)工艺.通过缩短水力停留时间(HRT)的方式提高进水总氮负荷启动反应器,反应器运行成功后,考察反应器沿程氮素、电导率、p H值及MLSS的变化规律,并对反应器内微生物种群形态结构及空间分布进行分析.结果表明,当进水NH_4~+-N平均浓度为40 mg·L~(-1)时,经过89 d的连续运行,新型HABR反应器实现了快速启动,并能稳定运行至187 d,稳定运行期出水NH_4~+-N和TN浓度分别稳定在2 mg·L~(-1)和10 mg·L~(-1)以下,去除率分别达到96%和83%以上,NRR达到0.15 kg·(m~3·d)~(-1).稳定运行阶段,NH_4~+-N与TN浓度在反应器沿程逐渐降低,NO-2-N和NO-3-N的生成量一直维持在较低浓度.第1个单元格脱氮效率最高,通过SEM和FISH分析表明,在第1个单元格中存在丰富的功能菌种亚硝化菌(AOB)和厌氧氨氧化菌(An AOB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号