首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
循环流生物膜反应器同时硝化反硝化实验研究   总被引:3,自引:0,他引:3  
研究了循环流软性填料生物膜反应器的同时硝化反硝化。实验结果表明,反应器中确实存在着同时硝化反硝化现象。考察了碳氮比(C/N)和溶解氧(DO)对同时硝化反硝化的影响。在进水COD和NH4+—N浓度为500mg/L、15mg/L时,出水COD、NH4+—N和TN浓度<50mg/L、3.0mg/L、4.5mg/L,COD去除率、硝化率和反硝化率分别达到90%、80%和70%。  相似文献   

2.
简捷硝化—反硝化过程处理焦化废水的研究   总被引:17,自引:0,他引:17       下载免费PDF全文
耿艳楼  钱易 《环境科学》1993,14(3):2-6,41
简捷硝化-反硝化过程处理焦化废水具有去除负荷高、出水浓度低、可节省反硝化碳源等优点.试验表明,当系统进水COD、NH_3-N和TN浓度分别为1204.8、274.3和443mg/L,系统总水力停留时间为26.2h时,系统出水COD、NH_3-N、NO_~-2-N、NO_3~--N和TN浓度分别为36.3、12.1、9.25、2.46和44.4mg/L.试验结果还证明本文所采用的系统确实处于简捷硝化-反硝化状态.  相似文献   

3.
高氨氮渗滤液处理的好氧反硝化工艺研究   总被引:15,自引:0,他引:15       下载免费PDF全文
连续动态试验研究表明,对于高浓度氨氮渗滤液,普通活性污泥法的好氧反硝化工艺的总氮去除率可达10%以上.硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升.硝化及反硝化的动力学分析表明,在溶解氧浓度为0.14mg/L左右时会出现硝化速率和反硝化速率相等的同步硝化反硝化现象,其速率为4.7mg/(Lh),硝化反应Kn=0.37mg/L;反硝化反应kD=0.48mg/L.  相似文献   

4.
移动床膜生物反应器同步硝化反硝化特性   总被引:11,自引:3,他引:8  
杨帅  杨凤林  付志敏 《环境科学》2009,30(3):803-808
采用挂膜填料代替传统膜生物反应器(MBR)的活性污泥,构建一种新型的移动床膜生物反应器 (MBMBR),考察其处理模拟生活污水的效果及同步硝化反硝化(SND)特性.结果表明,移动床膜生物反应器运行67 d,对模拟生活污水表现出良好的去除有机物及同步硝化反硝化能力.进水COD浓度为573.5~997.7 mg/L时,膜出水COD去除率为88.3%~99.2%.进水氨氮浓度为45.5~99.2 mg/L时,膜出水氨氮去除率为72.1%~99.8%,总氮去除率为62.0%~96.3%.批式实验结果表明,生物膜去除总氮的最佳溶解氧浓度为1 mg/L,其中氨氮和总氮去除率分别为100%和60%.生物膜系统内可能存在好氧反硝化现象.DO为3 mg/L且有机碳源充足时,生物膜总氮去除率为99.0%,SND率达到99.8%.扫描电镜对生物膜的观察发现生物膜内部存在着明显的孔隙,有利于溶解氧和有机基质从外界向生物膜内部传递.  相似文献   

5.
张静蓉  王淑莹  尚会来  彭永臻 《环境科学》2009,30(12):3624-3629
采用SBR反应器考察了短程硝化反硝化和同步硝化反硝化脱氮过程中N_2O的释放.通过实时控制策略实现了短程硝化反硝化生物脱氮,亚硝化率可维持在90%以上.在溶解氧水平为0.5、 1.0、 1.5和2.0 mg/L条件下,考察N_2O的释放和亚硝化率的变化情况.结果表明,溶解氧1.5 mg/L时最有利于维持稳定的亚硝化率,同时N_2O逸出量最小,每去除1 g氨氮释放N_2O 0.06 g;在碳纤维填料SBR反应器中,通过维持较低溶解氧水平和分段投加碳源的运行方式成功实现了同步硝化反硝化,同步硝化反硝化率在79%以上.在溶解氧水平为0.2、 0.4、 1.0和1.5 mg/L时,考察N_2O的逸出情况.结果表明,溶解氧在1.0 mg/L时最有利于控制N2O的释放,每去除1g氨氮释放N2O 0.021 g,其N_2O释放量仅为短程硝化反硝化的1/3.  相似文献   

6.
以生活污水作为处理对象,研究了双污泥短程硝化-反硝化除磷工艺A2/N-SBR长期反硝化除磷脱氮的性能,考察了典型周期系统运行效果,并探讨短程反硝化聚磷菌代谢机制。结果表明:A2/N-SBR工艺长期稳定运行有机物去除及脱氮除磷性能良好;典型周期内NO-2-N和TP出水浓度分别为0.53 mg/L和1.14 mg/L,TP去除率达88.8%;厌氧释磷阶段COD和胞内糖原浓度分别减少107.21 mg/L和76.81 mg/L,内碳源PHB含量增加150.88 mg/L,厌氧末期TP浓度是初始TP浓度的2.6倍,缺氧吸磷阶段TP和NO-2-N去除率分别为94%和96%。A2/N-SBR工艺脱氮除磷效果显著且稳定性强,短程反硝化聚磷菌吸磷反应的电子供体PHB的合成来自外碳源和糖原。  相似文献   

7.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

8.
异养硝化-好氧反硝化菌脱氮同时降解苯酚特性   总被引:3,自引:0,他引:3  
研究了异养硝化-好氧反硝化菌Diaphorobacter sp. PDB3去除氨氮同时降解苯酚的特性.在最佳碳氮比7和摇床转速160r/min下,该菌在21h内对初始浓度365mg/L苯酚的降解率达94.9%,总有机碳去除率达90.8%,同时40mg N/L氨氮被完全去除,中间代谢物硝态氮和亚硝态氮逐渐积累并在后期降低.氮平衡分析表明,52.3%的氨氮转化为胞内氮,37.2%转化为氮气,菌株主要通过细胞同化作用和异养硝化-好氧反硝化作用去除氨氮.检测到羟胺氧化酶、硝酸还原酶及亚硝酸还原酶活性,表明菌株PDB3具有完整的异养硝化-好氧反硝化偶联途径.随着苯酚浓度升高,抑制作用增强,脱氮效率降低.  相似文献   

9.
《环境工程》2015,33(1):57-61
研究了利用固相好氧反硝化同步去除水中硝酸盐和阿特拉津的可行性。通过释碳性能的比较得出淀粉基颗粒是适宜的反硝化碳源,在间歇式实验中,初始硝态氮浓度为55~60 mg/L时,平均反硝化速率为7.03 mg/(L·h),能有效去除水中的硝酸盐。当水中阿特拉津浓度低于10 mg/L时,对好氧反硝化脱氮没有影响,浓度增加至20 mg/L,对反硝化有抑制作用。在好氧反硝化条件下,阿特拉津初始浓度分别为0.1,1 mg/L时,24 h后去除率分别为93%和94.8%,阿特拉津的去除主要通过吸附作用。  相似文献   

10.
序批式膜反应器同步硝化和反硝化的特性   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高污水生物脱氮处理的效率和减少外加碳源,研究了序批式膜反应器(SBBR)在有氧情况下处理生活污水中同步硝化和反硝化的特性.试验表明,原水TN为80~110mg/L和溶解氧浓度为0.8~4.0mg/L情况下,出水TN小于15mg/L,NH3-N去除率达100%,TN去除率54%~77%,NH3-N容积负荷率为47~94mg/(L·d),TN容积负荷率为56~113mg/(L·d).TN的变化规律为在NH3-N降到零或最小之前,TN持续降低之后,TN有短时的上升后再缓慢降低.在较大的溶解氧浓度范围内,SBBR具有同步硝化和反硝化的能力,建议将NH3-N降解到零或最小值的时刻,作为同步硝化和反硝化的结束点.  相似文献   

11.
针对太湖地区菜地化肥氮投入量较大导致氮淋失严重及土壤酸化的现状,选取太湖地区的菜地土壤,利用盆栽试验连续种植三季小白菜,结合生物炭埋袋回收技术,研究不同化肥氮施用量(以N计,0和110 mg/kg)及生物炭添加量(w为0%、1%、2%和5%)对土壤氮淋失及酸碱缓冲能力的影响. 结果表明:在化肥氮施用量为110 mg/kg条件下,与无生物炭添加相比,生物炭添加量为2%时可使作物对土壤矿质态氮的利用效率提高约1倍(由41%增至81%),因化肥氮施用引起的土壤氮素残留量降低83%;生物炭添加可有效减少48%~65%的土壤氮淋失量,当添加量为1%、2%时,生物炭主要通过削减淋失液中ρ(TN)来降低土壤氮淋失量;添加量为5%时,则主要通过削减淋失液体积来实现. 无论是否添加化肥氮,生物炭均能有效维持土壤原有的pH、w(有机质)及w(盐基离子);促使土壤酸碱缓冲能容量增加22%~37%,致酸速率降低17%~80%,显著提升了土壤的酸碱缓冲能力. 研究显示,在化肥氮施用量为110 mg/kg条件下,生物炭添加量为2%时能对土壤酸化产生较好的缓冲效果.   相似文献   

12.
DO和曝停比对单级自养脱氮工艺影响试验研究   总被引:7,自引:1,他引:6  
方芳  杨国红  郭劲松  秦宇 《环境科学》2007,28(9):1975-1980
为提高SBBR单级自养脱氮系统脱氮性能并考察DO和曝/停比对SBBR单级自养脱氮系统的影响,采用4组对比试验进行研究.结果表明,连续和间歇2种曝气方式均可实现单级自养脱氮,在进水氨氮浓度为160 mg/L左右,温度30℃±2℃,pH值7.8~8.2,HRT为2 d,DO为0.8~1.0 mg/L的条件下,连续曝气系统的氨氮转化率和总氮去除率分别达到80%和70%.DO为(曝气)2.0~2.5 mg·L-1/(停曝)0.2~0.4 mg·L-1,曝/停比为2 h∶2 h的系统则达到90%和80%以上.SBBR单级自养脱氮系统的DO应随其曝/停比进行调节,同时还可能与反应器内生物量及微生物在活性污泥和生物膜中的分布情况有关.本研究还探讨了SBBR单级自养脱氮的机理.  相似文献   

13.
选择滇池北岸大清河下游典型农区韭菜田为对象,对雨水进行化学分析,研究了2007年大气氮湿沉降通量及其动态变化,并通过田间试验观测了地表(韭菜地土壤、韭菜废弃物原位腐解、沟渠污水)的氨氮挥发.结果表明,全年大气湿沉降氮(以N计)7.1kg/hm2,其中雨季(4~9月份)占89%.韭菜一次基施尿素(以N计)276kg/hm2,35d累计氨挥发占施氮量的32%,其中前9d氨挥发占总氨挥发96%.韭菜残体腐解21d累计氮挥发占植株氮23%.含氮7~51mg/L的污水(其中氨氮2.7~25.8mg/L)露天放置12d,水体总氮的27%~38%挥发进入大气.可见,韭菜田氮挥发是该地大气氮重要来源之一.  相似文献   

14.
采用SBR同步脱氮除硫反应器,设置了化学对照组(灭菌,不添加污泥)和生物试验组(添加污泥),以期研究亚硝酸盐型同步脱氮除硫工艺中S0的产率以及特性.发现化学对照组中NO2--N和S2--S的去除率最高可分别达到25.07%和62.26%,其主要产物为NH4+-N和S2SO32--S,并无S0生成.而在生物试验组中,NO2--N和S2--S的去除率可分别高达100%和99.94%,在适宜浓度范围内(60~180mg/L),出水主要产物为S0-S和N2.当进水S2--S为180mg/L时,S0-S产率可高达79.58%.所产生的S0以斜方硫(S8)形式存在,表面带负电荷,粒径呈正态分布.  相似文献   

15.
去除预处理生活污水的潜流人工湿地中试除氮性能   总被引:1,自引:1,他引:0  
为研究人工湿地除氮机制,构建并考察了中试潜流人工湿地对不同形态氮的去除效果,并通过分析出水各种形态氮的分布和湿地系统内部不同形态氮的二维分布特征研究了人工湿地的除氮机制. 结果表明,进水ρ(TN)为30~115 mg/L,ρ(NH4+-N)为25~60 mg/L,ρ(CODCr)为90~190 mg/L,水力停留时间为4 d条件下,氮素被有效去除,TN去除率为32%~70%,NH4+-N去除率为33%~73%;试验系统脱氮的主要方式为硝化/反硝化作用;湿地上部主要进行硝化反应,中下部主要进行反硝化反应;湿地下半部对NH4+-N去除贡献有限,硝化作用受限;欲提高系统除氮效率,需提高溶解氧水平并改善有机氮矿化条件.   相似文献   

16.
响应面法优化CANON工艺处理猪场沼液脱氮性能研究   总被引:3,自引:2,他引:1       下载免费PDF全文
王子凌  信欣  刘琴  杨豪  曹惜霜 《环境科学研究》2020,33(10):2326-2334
为了得到全程自养脱氮(completely autotrophic nitrogen removal over nitrite,CANON)工艺处理猪场沼液脱氮性能的最佳工艺条件,以处理实际猪场沼液的连续流CANON工艺为研究对象,采用BBD响应面法优化其关键运行参数,探究了HRT(水力停留时间)、温度和进水ρ(NH4+-N)各因素的交互作用.结果表明:①HRT、温度和进水ρ(NH4+-N)对反应器脱氮效率均有显著影响,且数学模型拟合度良好,各因素对TN、NH4+-N去除率的影响程度由强到弱依次为进水ρ(NH4+-N)> HRT >温度.②通过BBD响应面法获得最佳脱氮条件为HRT 1.35 d、温度34.4℃、进水ρ(NH4+-N)415 mg/L.在接近响应面优化后的条件下进行验证试验,得到出水ρ(NH4+-N)平均值为74.68 mg/L,NH4+-N去除率为83.05%;出水ρ(TN)平均值为108.28 mg/L,TN去除率为73.91%,与模型预测值较接近.研究显示,BBD响应面法能在较少的试验次数下检验影响因素之间的交互作用,可科学地优化CANON工艺处理猪场沼液的脱氮性能.   相似文献   

17.
MBR短程硝化反硝化处理高氨氮废水影响因素的研究   总被引:1,自引:0,他引:1  
采用AOMBR处理模拟高氨氮废水,研究了短程硝化反硝化的效果,试验表明:在DO为1.0mg/L-1.5mg/L,系统温度为28℃,pH控制在7.5到8.6之间,进水NH3-N在598.2mg/L-701.3mg/L时,能够迅速启动反应器,在其他工况稳定不变的条件下,探讨了pH、温度和DO等对系统短程硝化稳定运行的影响,并探讨了此过程的影响机理。整个实验过程中,pH和进水氨氮的浓度能够短暂的影响亚硝酸盐的积累,但是并不能长久的使之稳定运行。在形成短程硝化的过程中膜污染逐渐加剧,经过清洗之后膜通量并不能完全恢复。  相似文献   

18.
通过计算N和DO的质量平衡,研究饮用水生物处理小试工艺中是否存在NH4 -N的非硝化去除途径,并探讨其可能机制.结果表明,当生物流化床和生物滤池进水NH4 -N浓度大于2 mg/L时,前者进水的NH4 -N、NO2--N和NO3--N之和比出水高出0.91 mg/L,后者理论上消耗的DO比实际多约2.90 mg/L,说明这2种工艺中均有氮亏损现象发生,一部分NH4 -N通过与DO无关的非硝化作用被去除.对非硝化去除途径的分析表明,因为反应器对磷元素和有机物的利用不随氮亏损发生变化,可以排除掉同化作用和反硝化作用;因为反应器进水低碳高氮的特性NO2--N的积累与发生氮亏损的废水生物处理系统相似,据此提出在生物膜缺氧内部发生、通过短程硝化和厌氧氨氧化的偶联(或OLAND反应)将NH4 -N和NO2--N同时转变为N2脱除的自养脱氮是饮用水生物处理中氮亏损的可能途径.  相似文献   

19.
秸秆还田条件下氮肥用量对稻田氮素淋失的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
汪军  王德建  张刚  王灿 《中国环境科学》2010,30(12):1650-1657
通过田间小区试验,研究了秸秆还田条件下不同氮肥用量对稻田田面水、渗漏水中氮素动态变化和淋失量的影响.结果表明,稻季秸秆还田量为6t/hm2,氮肥用量分别为0,120,180,240,300kg/hm2时,稻季田面水、渗漏水中无机氮(NH4+-N与NO3--N)浓度随氮肥用量的增加而显著增加,秸秆还田显著降低田面水和渗漏水中NH4+-N和NO3--N浓度;田面水中NH4+-N浓度在每次施肥后的第2d、NO3--N在第2~4d达到峰值,渗漏水中NH4+-N在每次施肥后的第2~4d, NO3--N在施基肥后的第20d左右达到峰值;不同处理田面水中NH4+-N、NO3--N的平均浓度及变幅分别为1.23±0.88(0.01~9.89)、1.14±0.18(0.14~2.86)mg/L,渗漏水中分别为1.78±1.60(0.03~22.66)、1.42±0.24(0.22~2.66)mg/L.稻田渗漏量与水稻移栽后天数呈极显著负相关,整个水稻生育期内的总渗漏量为298mm.不同施氮处理稻季NH4+-N、NO3--N的平均净淋失量分别为4.77±4.37 (0.45~12.33)、1.76±1.08(0.49~3.31)kg/hm2,占施氮量的2.57%~4.11%、0.41%~0.56%,氮素损失以NH4+-N为主.  相似文献   

20.
一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动   总被引:1,自引:0,他引:1  
利用新型固定生物膜一活性污泥反应器处理实际污泥消化液,通过接种短程硝化污泥和厌氧氨氧化生物膜填料,逐渐提高进水氨氮浓度并控制溶解氧浓度在0.11~0.42mg/L,系统在65d内实现了短程硝化-厌氧氨氧化反应的启动.反应器系统稳定运行阶段具有良好的污染物去除效果,进水COD和氨氮浓度为921和1120.8mg/L,COD、氨氮和总氮去除率分别为66.8%,99.0%和94.4%,总氮去除负荷为0.27kgN/(m3·d).试验表明采取逐步提高进水中消化液比例的策略,有利于一体式厌氧氨氧化工艺的快速启动.进一步分析发现系统同时存在厌氧氨氧化和反硝化的脱氮途径,对总氮去除的贡献率分别为67.4%~91.1%和8.9%~32.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号