首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
铁碳微电解/Fenton试剂联合处理垃圾渗滤液研究   总被引:1,自引:0,他引:1  
垃圾渗滤液水量、水质波动大,污染强度高,处理困难且费用较高,以扬州市某垃圾填埋场渗滤液为研究对象,采用两种微电解-Fenton组合工艺对垃圾渗滤液进行处理.重点考察了反应时间、H2O2投加量和pH值等因素对渗滤液的处理效果.结果表明:(1)微电解-Fenton组合Ⅰ:当pH值为4.0,H2O2投加量为3 mi/L,反应时间为90 min时,COD去除率达到64.3%,氨氮的去除率为65.9%;(2)微电解-Fenton组合Ⅱ:当pH值为4.0,H2O2投加量为1.0 mL/L,反应时间为90 min时,COD去除率达到71.3%,氨氮的去除率为83.9%.  相似文献   

2.
微波催化氧化法预处理垃圾渗滤液的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用微波-活性炭-Fenton催化氧化预处理垃圾渗滤液,研究了不同因素对垃圾渗滤液处理效果的影响.结果表明,COD和氨氮去除率随活性炭用量、微波辐射时间和微波功率增加而增加;随Fe2+用量和H2O2用量增加,COD和氨氮去除率先增加而后下降;随pH值增加,氨氮去除率显著增加,COD去除率变化不明显.在微波功率为300W,pH值为8,活性炭9g/L,Fe2+用量为0.02mol/L,H2O2用量为7mL/L,辐射时间6min条件下,垃圾渗滤液中COD和氨氮去除率分别达到68.22%和78.08%,SS去除率达到78.55%,浑浊度去除率达到99.02%,颜色由黑褐色去除为接近无色,BOD5/COD由0.21提高到0.45;研究比较了不同处理对垃圾渗滤液的处理效果.结果显示,微波催化氧化对垃圾渗滤液中COD和氨氮去除率明显高于其他处理.  相似文献   

3.
采用SBR法对早期垃圾渗滤液进行好氧生物处理,探讨了进水COD负荷、pH值对COD、氨氮的处理效果和机理。实验结果表明:当运行周期为24 h时,好氧生物处理对早期的垃圾渗滤液有很好的处理效果,COD的去除率都能达到88%左右;出水的COD浓度随着进水COD浓度呈直线变化。pH一直保持在中性条件下,有利于COD的去除,但是对氨氮的去除却有一定的抑制作用。  相似文献   

4.
垃圾渗滤液浓缩液高铁酸钾联合PAC处理技术研究   总被引:1,自引:1,他引:0  
以碟管式反渗透(DTRO)处理垃圾渗滤液产生的浓缩液为研究对象,采用高铁酸钾联合聚合氯化铝(PAC)处理浓缩液.结果表明,在单独采用高铁酸钾的条件下,DTRO浓缩液COD、UV_(254)和色度去除率随着高铁酸钾投加量的增加而升高.高铁酸钾投加量为10 g·L~(-1),pH为5时,COD、UV_(254)和色度去除效果最佳,反应在40 min内基本完成,COD、UV_(254)、色度去除率分别为38.5%、35.7%和68.5%.通过响应曲面法分析高铁酸钾联合PAC处理DTRO浓缩液效果可得,高铁酸钾投加量在10.0~13.0 g·L~(-1)之间,pH调节至3.0~4.0,PAC投加量为13.0~15.0 g·L~(-1)时,DTRO浓缩液COD去除率可达74%.  相似文献   

5.
在不同的环境条件下,以北京昌平小汤山的阿苏卫垃圾卫生填埋场渗滤液为研究对象,以COD、氨氮为评价指标,进行了赤泥吸附垃圾渗滤液中有害物质的实验,研究了赤泥的COD、氨氮吸附效果与其用量、渗滤液pH、温度、振荡时间的关系.实验表明:赤泥对氨氮有一定的吸附能力,其最大吸附量约为32mg/g,吸附氨氮的最佳条件为赤泥用量30 g/L、pH值8、温度4℃、振荡时间60min;赤泥对COD也有一定的吸附能力,其最大吸附量约为87mg/g,吸附COD的最佳条件为赤泥用量30g/L、pH值8、温度4℃、振荡时间80min.根据实验结果,对赤泥吸附COD、氨氮的机理进行了探讨.  相似文献   

6.
研究了Fenton试剂氧化处理垃圾渗滤液的最佳反应条件,在此条件下进行活性炭、沸石组合吸附法试验,并对处理效果进行比较,结果显示:在pH值为4,n(H2O2)/n(Fe2+)=10,反应时间60 min,沉淀时间90min时,Fenton试剂对渗滤液的氧化效果最好;三种组合吸附方式对渗滤液中COD的吸附效果依次为活性炭-沸石>沸石-活性炭>活性炭+沸石;对垃圾渗滤液氨氮的去除能力为:活性炭+沸石>活性炭-沸石>沸石-活性炭。经过Fenton试剂氧化-活性炭+沸石吸附处理后,COD、氨氮、色度和pH值分别为82.05 mg/L、22.65 mg/L、5倍和6.25。分析有机物的去除机理分析得出,经过Fenton试剂氧化-活性炭+沸石吸附处理,垃圾渗滤液中的有机物能够得到充分降解,其种类与各物质的含量都有所降低,特别是氨氮的含量和色度明显降低。经氧化吸附处理后,垃圾渗滤液各项指标均符合排放标准。  相似文献   

7.
本文对Fenton试剂处理垃圾渗滤液进行了研究,探讨H2O2用量、n(H2O2):n(Fe2+)、pH值、反应时间等因素对COD和氨氮去除率的影响,结果表明:Fenton法对垃圾渗滤液中COD具有良好的处理效果,最佳条件是:初始pH值为4,n(H2O2)∶n(Fe2+)为2∶1,反应时间为1 h,垃圾渗滤液的COD去除率可达70.8%。但单独采用Fenton法对垃圾渗滤液中氨氮的处理效果不明显。  相似文献   

8.
本文选用硫酸铝作为絮凝剂处理垃圾渗滤液,考察了投加量、搅拌时间、pH值和温度4个因素,研究其对垃圾渗滤液中COD去除效果的影响。实验结果表明反应最佳条件为:絮凝剂投加量为16g/L,pH值为6,温度为40℃,搅拌时间为15min,此时色度明显减弱,COD的去除率可达到79.8%。  相似文献   

9.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

10.
高铁酸钾处理废水中硝基苯的研究   总被引:1,自引:0,他引:1  
本实验以高铁酸钾为水处理剂,对其在废水中的硝基苯的去除进行了研究,考察了高铁酸钾的用量、pH值、反应时间及硝基苯的初始浓度四个影响因素对硝基苯去除率的影响,最终确定了高铁酸钾去除硝基苯的最佳反应条件为:初始pH值为9,高铁酸钾与硝基苯的摩尔比为10:1,反应时间30min,初始浓度小于254.5mg/L时,硝基苯的去除率最佳,达到到6.2%。  相似文献   

11.
文章采用十六烷基三甲基溴化铵(HDTMA)、丙烯酰胺(AM)和聚合氯化铝(PAC)3种改性剂分别对成都粘土进行改性,将改性粘土用于垃圾渗滤液处理,比较不同改性粘土对氨氮和COD的吸附性能,并通过X射线衍射、红外光谱、热分析技术对改性粘土进行表征,分析作用机理;研究表明,粘土经过改性后,3种改性粘土的底面间距分别增大0.7533、0.3496、0.1929nm,对垃圾渗滤液中氨氮和COD去除效果关系为:HDTMA改性土>AM改性土>PAC改性土>原土,HDTMA改性土为最优改性土。改性粘土预处理渗滤液方法是可行的,HDTMA改性土是最优改性土,对氨氮去除率达到48.68%,COD去除率达到32.27%,控制条件为:投加量为100g,pH=7,转速为200 r/min(50min),静置时间6h。  相似文献   

12.
微波协同氧化预处理垃圾渗滤液NF膜滤浓缩液研究   总被引:1,自引:0,他引:1  
针对城市生活垃圾填埋场垃圾渗滤液NF膜处理后产生的浓缩液处理难问题,采用微波协同氧化技术对其进行预处理,探讨了pH值、预反应时间、药剂用量、微波反应时间等因素对浓缩液CODcr及色度去除率的影响.结果表明:当pH=4,预反应时间60 min,药剂用量1g/l、微波反应时间3 min时,CODcr、色度的去除率分别为71.2%,80%.预处理后的出水CODcr及色度指标达到垃圾渗滤液现有生化处理系统的进水要求.  相似文献   

13.
主要研究了不同pH值对高氨氮垃圾渗滤液的电化学氧化的影响,重点考察了pH值在电解过程中的电解速率、电流效率、能耗以及三氯甲烷生成情况。结果表明:pH对电化学氧化垃圾渗滤液过程有重要的影响。在弱碱性条件下,电解垃圾渗滤液过程中氨氮及COD的降解速率、电流效率及能耗均要比在强酸、强碱条件下高,当pH为8.09时,经过6 h降解,氨氮的去除率达到100%,氨氮的降解速率为7 mg/(L.min),电流效率为45.23%,氨氮能耗为0.09kWh/g,COD的降解去除率达到50%,三氯甲烷产生的随着电解时间的增加而增加,电解6 h后三氯甲烷浓度从低于检测值升高至0.636 mg/L。  相似文献   

14.
微波/活性炭强化过硫酸盐氧化处理垃圾渗滤液研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用微波(MW)-活性炭(AC)强化过硫酸盐(PS)氧化处理垃圾渗滤液,研究不同因素对垃圾渗滤液处理的影响,比较不同组合工艺对渗滤液处理的效果及活性炭的多次使用情况.结果表明,COD和氨氮(NH4+-N)的去除率随着AC用量、PS用量(S2O82-:12COD0)、MW功率和辐射时间的增加而增大,pH值对COD的去除影响不明显, NH4+-N在碱性条件下得到更理想的去除效果;在活性炭用量为10g/L,PS用量为S2O82-:12COD0=1.2,pH=9,MW功率和辐射时间分别为500W和10min时,垃圾渗滤液中的COD和NH4+-N去除率分别为78.2%和67.2%,BOD5/COD由0.17增至0.38;不同工艺对垃圾渗滤液处理效果显示,MW-AC-PS工艺对垃圾渗滤液中COD和氨氮去除率明显高于其他处理,且MW、AC和PS之间存在协同效应,MW热效应显著;活性炭四次实验后,COD和NH4+-N的去除率分别为61.2%和46.1%.  相似文献   

15.
武奇  范建伟 《环境工程》2022,40(5):25-30
采用共沉淀法制备Fe3O4-RGO纳米复合催化剂,并将其应用于类芬顿处理垃圾渗滤液,研究了反应时间、初始pH值、催化剂质量浓度和H2O2投加量对Fe3O4-RGO纳米复合催化剂类芬顿降解垃圾渗滤液COD去除率的影响。结果表明:反应时间为90 min,初始pH值为3,催化剂质量浓度为1 mg/L,H2O2投加量为0.08 mmol/L时,COD去除率达到最大值64.7%。有机物组分对比结果显示,类芬顿反应后垃圾渗滤液中大分子有机物得到较好的降解转化。Fe3O4-RGO纳米复合催化剂具有较好的重复利用性,重复使用5次后对垃圾渗滤液的COD去除率仅降低2.3%。  相似文献   

16.
采用O3和O3/H2O2氧化法对某制药厂的制药废水进行氧化处理,主要考察废水的pH值、O3流量、反应时间对COD去除率的影响。结果表明,O3氧化法的最佳条件为:废水的pH值为9.00,O3流量为5 g/h,反应时间为90 min。在此条件下,废水的COD和TOC的去除率分别达到64.16%和75.34%。O3/H2O2氧化法更能有效的提高废水COD和TOC的去除率,但需要合适的H2O2投加量。处理后两者去除率分别达87.45%和91.49%,且处理后的COD值(351 mg/L)符合该厂排入市政管网的要求(500 mg/L),同时废水的可生化性提高,B/C由0.12提高至0.32。对O3/H2O2处理制药废水的反应机制研究表明,COD的去除率随自由基抑制剂浓度的增加而降低,COD的去除主要是体系中.OH的贡献。另外,采用COD和TOC结合起来作为评价指标更能准确的反映出制药废水中有机物的去除规律。  相似文献   

17.
采用高铁酸钾对水中三氯生(TCS)的去除进行了研究,探讨了TCS的降解机理,考察了高铁酸钾投加量、pH值、天然有机物(NOM)和双氧水等因素对TCS去除和中间产物2,4-二氯苯酚(2,4-DCP)生成的影响.结果表明:TCS通过醚键断裂降解生成2,4-DCP,TCS浓度为550μg/L,高铁酸钾浓度为15mg/L时,600s后TCS去除率可达96.48%.增加高铁酸钾投加量可以提高TCS的去除,TCS的去除率随pH值升高呈现出降低的趋势,酸性环境有利于TCS的去除,pH值为4时,TCS的去除达100%,腐殖酸和双氧水对TCS的去除有抑制作用.高铁酸钾可以有效降解TCS并降低溶液的急毒性,降低水质健康风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号