首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
江苏省温室气体排放研究   总被引:3,自引:0,他引:3  
根据IPCC Guidelines(1995)提供的方法,对1990年江苏省温室气体排放清单统计计算,分析该地区能源、工业及农业CO_2、CH_4等温室气体排放量的状况.江苏省年人均排放CO_2为1970kg、CH_4为22.65kg、N_2O为0.11kg,与全国平均水平接近、为全球均值一半.能源消耗是江苏省各项活动中CO_2的排放主要因素,占总排放量的91.6%;CH_4的排放主要来自水稻田,占总排放量的44.1%.  相似文献   

2.
基于投入产出法的北京能源消耗温室气体排放清单分析   总被引:2,自引:0,他引:2  
城市是一个巨大能源物资消耗体和温室气体排放体,相关研究受到广泛关注.本文以2007年为例基于投入产出法研究北京市能源消耗的温室气体排放量,计算得出CH4和N2O这两种常规温室气体排放量.结果表明,北京市2007年能源消耗温室气体排放量为3531.72万tCO2当量,其中CO2排放量为3514.40万t,CH4排放量为1734.32t,N2O排放量为435.83t.北京市工业部门仍然是主要的温室气体排放部门,其排放的温室气体占CO2总量的98.96%,CH4总量的88.48%和N2O总量的98.99%.不同最终使用部门中,政府部门消费产生的温室气体排放量超过总量的15%,高于城镇消费和农村消费之和;调出和出口部门的碳排放量超过总量的40%,所占比例最大.贸易中,隐含在调出和出口部门中温室气体排放量是隐含在调入和进口部门的十几倍.北京市不同行业的温室气体排放强度略优于全国水平.降低北京市温室气体排放量可从进一步优化产业结构,发挥科技减排的作用,提高不同产业的能源利用率等方面采取措施.  相似文献   

3.
蔡博峰 《环境保护》2011,(23):72-73
到2010年,城市集中了全球50%以上的人口,到2050年将达70%.城市消耗着全世界约75%的能源,是温室气体排放的重点地区.大城市气候领导集团(C40)的研究报告认为,城市占据了世界人为温室气体排放的80%,城市温室气体排放的快速增长已成为全球温室气体排放量上升的重要原因.尽管这一结论仍存争议,但城市直接排放的温室气体和城市消费引发间接温室气体排放无疑是非常巨大的.因此可以说,城市是全球低碳发展的核心和主体.应对全球气候变化,减排温室气体,城市有着决定性作用.  相似文献   

4.
咸阳市温室气体排放的动态分析及等级评估   总被引:1,自引:1,他引:0  
通过采用《2006年IPCC国家温室气体清单指南》和中国《省级温室气体编制指南》推荐的方法,分析了咸阳市温室气体排放的动态变化,并提出基于全球标准的温室气体排放等级评价方法,对咸阳市温室气体进行了排放等级评估.结果表明:1995—2011年,咸阳市温室气体排放量从1253.21×104t上升为5531.06×104t,年均增高9.72%,呈快速上升趋势.工业(年均增高21.34%)为增幅最高的部门,其次依次为能源(9.62%)、废弃物(7.90%)、农业(2.45%).从温室气体构成看,能源占84.73%~91.81%,工业占1.46%~8.55%,农业占3.11%~9.32%,林业碳减排占-0.53%~-2.36%,废弃物处理占1.31%~8.39%.由此可见,咸阳市温室气体排放增长的主要原因是能源消费的增加以及工业生产的大幅增长.万元GDP温室气体排放量波动下降,年均降低4.53%;人均、单位面积温室气体排放量和温室气体排放指数快速升高,年均增幅分别达9.31%、9.72%和9.48%.16年间,咸阳市温室气体排放等级从较低(Ⅰc)持续升高至中上等级(Ⅱc),已高出应对全球气候变暖目标(Ⅰb)4个亚级,温室气体减排工作刻不容缓.  相似文献   

5.
基于文献计量方法的全球温室气体排放研究态势分析   总被引:1,自引:0,他引:1  
刘阎霄  张扬  李政  郭怀成 《环境科学学报》2021,41(11):4740-4751
为共同应对温室气体排放造成的气候变化问题,学界进行了大量相关研究,其研究现状受到各界关注.为深入了解全球温室气体排放研究的目前状况和前沿动态,以ISI Web of Knowledge的Web of Science引文数据库为数据源,采用文献计量学方法对其中1995-2019年发表的全球温室气体排放领域的相关文献进行计量分析.结果表明:①本领域在全球范围内维持了比较高的关注度,近10年发文量上升速度较快;②领域内主要研究力量分布在美国、中国、英国等地,且具有较大学术影响力的各机构、作者间合作频繁;③领域研究内容以二氧化碳、甲烷等传统温室气体及其导致的气候变化效应为主,中后期出现了氧化亚氮等其他温室气体的相关研究,中国是较多见的研究案例所在地;④领域高引文章涉及重要温室气体的源汇识别和强度计算、全球排放预算估计、针对重要排放部门的减排措施等主题,采用包含实验测量、模拟计算在内的多种手段寻找优势减排潜力部门,推动减排目标的实现.未来本领域的研究将继续深入发展,从而更有效地服务于气候变化应对战略.  相似文献   

6.
基于Eurostat New Cronos数据库提供的欧盟25个国家2003年的GDP、能源消耗与温室气体排放数据,在SAS系统下,运用描述性分析与回归分析,检测了欧盟25个国家经济发展、能源消耗与温室气体排放之间的相关性.研究表明:GDP、能源消耗和温室气体排放三者之间存在正相关性;相对经济发展的环境代价而言,欧盟新成员国的环境影响问题较欧盟15国更严重.  相似文献   

7.
深圳市温室气体排放清单研究   总被引:10,自引:5,他引:5       下载免费PDF全文
根据深圳市相关统计资料收集到的活动水平数据,参照《2006年IPCC国家温室气体清单指南》温室气体核算方法,建立了深圳市温室气体排放清单,并且与其他城市的温室气体排放水平进行了对比. 结果表明:2008年深圳市温室气体总排放量(以CO2排放当量计)为6 569.4×104 t,能源部门的温室气体排放量占总排放量的比例最大,达80.8%;工业过程、废物处理处置部门和农林和其他土地利用(AFOLU)部门排放所占比例分别为16.5%、5.1%和-2.4%. 深圳市温室气体人均排放量为7.49 t/人,单位GDP的温室气体排放量为0.84 t/104元,二者均低于北京、上海、天津和无锡的平均排放水平,但高于重庆市.   相似文献   

8.
在我国,建筑行业耗费了大量的能源,也带来了相当大的环境污染。要实现温室气体和污染物排放控制目标,减少建筑物的能源消耗最为关键。因此,低能耗的绿色建筑是建筑未来发展的必然趋势。本研究以环境国际公约履约大楼(简称"履约大楼")为案例,分析了履约大楼节能设计的关键——被动设计、高能效设备设施选配、能量回收与回馈技术运用以及太阳能综合利用,并结合履约大楼(2010—2015年)运行中年均电力节能减排降耗约28%和热力节能减排降耗约41%(以约束值为基值)的实绩,提出有必要将办公建筑的电力消耗与电力生产过程中污染物排放、资源消耗等进行关联核算,从建筑的设计、建造、运行与拆除的全寿命周期来审视建筑对环境的影响,力求把建筑对环境的影响降到最低。  相似文献   

9.
对武汉市2005、2010和2012年废弃物处理温室气体排放量进行了核算,结果表明2005、2010和2012年废弃物处理中生活垃圾填埋和废弃物焚烧产生的温室气体量最大,占折算为碳含量后的71.46%以上,是武汉市废弃物处理温室气体排放的重要来源。填埋产生的温室气体在2010年达到峰值,因填埋量减少、焚烧量增加导致焚烧产生的温室气体量增加。废水处理中温室气体的量相对较小,产生甲烷(CH_4)约0.44至0.67万t。废水处理中温室气体排放量随着污水收集率逐步提高而降低,而又随污水总量增加而增加。总体来说,废弃物处理中二氧化碳(CO_2)排放量逐年增加,CH_4先增加后降低,氧化亚氮(N_2O)逐年增加。此外,武汉市固体废弃物处理温室气体排放主要控制填埋量和焚烧量,而加强废弃物的收集和管理,以及技术提升、生态修复、增加植被碳汇将是武汉市废弃物处理温室气体控制和减排的重要措施。  相似文献   

10.
洱海流域稻鸭共作对稻田温室气体排放和水稻产量的影响   总被引:5,自引:0,他引:5  
稻季是水旱轮作生态系统温室气体排放的主要时期,探索有效措施实现稻季温室气体减排和水稻增产已成为当前研究的热点.稻鸭共作是减少稻季温室气体排放的有效措施之一,而确定合理的稻鸭共作密度对确保洱海流域水稻产量基础上实现温室气体减排具有重要意义.该研究通过设置不同稻鸭共作密度试验,采取密闭静态箱—气相色谱法研究了稻鸭共作对温室气体排放规律、排放量及全球增温潜势(GWP)的影响.结果表明:水稻生育期,CH_4和N_2O均在分蘖期和结实期出现排放峰;CH_4排放通量、累计排放量和总排放量大小均为常规处理(CT)低密度鸭处理(LDD)高密度鸭处理(HDD)空白处理(CK),而N_2O为HDDLDDCTCK.与CT相比,CK、LDD、HDD的CH_4排放总量分别降低45%、18%、25%,N_2O排放总量分别降低8%、增加11%和37%,温室气体综合增温潜势分别降低41%、14%、17%.田面水DO、NH~+_4-N、NO~-_3-N及土壤温度是引起温室气体CH_4和N_2O排放差异的主要因素.不同处理的水稻产量为LDDCKCTHDD.合理的稻鸭共作密度降低CH_4排放,增加N_2O排放,减缓全球增温潜势,提高了水稻产量.兼顾水稻产量和温室气体减排效果,LDD处理综合效益最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号