首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Xiangxi River is one of the main tributaries in the Three Gorges reservoir, with the shortest distance to the Three Gorges Project Dam. Severe and frequent algal bloom events have occurred frequently in the Xiangxi River in recent years. Therefore, the current study develops a three-dimensional unstructured-mesh model to investigate the dynamic process of algal bloom. The developed model comprises three modules, namely, hydrodynamics, nutrient cycles, and phytoplankton ecological dynamics. A number of factors, including hydrodynamic condition, nutrient concentration, temperature, and light illumination, that would affect the evolution of phytoplankton were considered. Moreover, the wave equation was used to solve the free surface fluctuations and vertical Z-coordinates with adjustable layered thicknesses. These values, in turn, are suitable for solving the algal bloom problems that occurred in the river style reservoir that has a complex boundary and dramatically changing hydrodynamic conditions. The comparisons between the modeling results and field data of years 2007 and 2008 indicate that the developed model is capable of simulating the algal bloom process in the Xiangxi River with reasonable accuracy. However, hydrodynamic force and external pollution loads affect the concentrations of nutrients, which, along with the underwater light intensity, could consequently affect phytoplankton evolution. Thus, flow velocity cannot be ignored in the analysis of river algal bloom. Based on the modeling results, building an impounding reservoir and increasing the releasing discharge at appropriate times are effective ways for controlling algal bloom.  相似文献   

2.
In this study, 44 profiles of gross primary productivity(GPP) and sunlight, along with water temperature, Chlorophyll-a(Chla) and nutrients, were observed in Meiliang Bay of Taihu Lake, China, in the spring, summer, and fall seasons. Effects of water temperature, light,and nutrient concentration were examined in relation to the GPP-unit-Chla(GPP of algae per Chla). The results showed that the optimum temperature for the GPP of phytoplankton was 27.9°C, the optimal PNA-unit-Chla(photon number absorbed by phytoplankton per Chla) was 0.25(mol), and the HSCN-unit-Chla and HSCP-unit-Chla(half-saturation constants of nitrogen and phosphorus of algae per Chla) were 0.005(mg/L) and 0.0004(mg/L), respectively. The seasonal dependency of the effect of different factors on the GPP was analyzed. Compared with temperature and nutrients, light was found to be the most important factor affecting the GPP during the three seasons. The effect of temperature and nutrients on the GPP of phytoplankton has obvious seasonal change. In spring, temperature was the secondary factor affecting the GPP of phytoplankton, and the effect of nutrients may be negligible in the eutrophic lake on account of temperature limit, which showed that the GPP of algae was only affected by the physical process. In summer and fall, temperature didn't affect the GPP of algae, and the presence of nutrients was the secondary factor affecting the GPP of phytoplankton. From summer to fall, effect of phosphorus was weakened and effect of nitrogen was enhanced.  相似文献   

3.
Spatial variations in phytoplankton community within a large mesotrophic reservoir (Miyun reservoir, North China) were investigated in relation to variations in physico-chemical properties, nutrient concentrations, temperature and light conditions over a 5 month period in 2009. The dynamics of phytoplankton community was represented by the dominance of cyanobacteria through summer and fall, following with a short term dominance of chlorophyta in late fall, and a relatively high abundance of diatom in October; on the other hand, maximum phytoplankton biomass was recorded in the north shallow region of Miyun reservoir with a higher nutrients level. Particular attention was paid to the impacts of environmental conditions on the growth of two cyanobacteria genera, the toxin-producing Microcystis and the taste & odor-producing Oscillatoria. Microcystis biomass was in general greatly affected by water temperature and mixing depth/local water depth ratio in this reservoir, while the Oscillatoria biomass in the surface and middle layers was greatly affected by total dissolved phosphorus, and that in the bottom layer was related with the Secchi depth/local water depth ratio. Abundant Oscillatoria biomass was observed only in late September when Microcystis biomass decreased and allowed sufficient light go through.  相似文献   

4.
A mathematical model relating to the change in phytoplankton biomass in the period of growth and nutrient concentration in the media was proposed on the basis of the Monod equation and was testified by simulation experiments. Analysis of the experiment data showed that: the half-saturation constants for growth Kp (μmol/L) for Skeletonema, Chaetoceros and Prorocentrum were 5.52, 1.90 and 0.46, respectively; the balance between stimulation of nutrients and the inhibition of some other materials was found in the effect of domestic sewage on algal growth and the stimulation played a leading role; domestic sewage was more stimulative on dinoflag-ellate than on diatom and chlorophyte when the assemblage of the algae was cultured. The experiment suggested that mathematical model reasonably explained the characteristics of phytoplankton growth in different nutrient conditions and was worthy to be further improved for eutrophication prediction in off-shore water.  相似文献   

5.
The photodegradation of bisphenol S (BPS) in aqueous solutions was studied under different conditions. Photolysis and kinetics were investigated, as were the photolysis mechanism and the influences of initial pH value, light source, and environmental substances in water. The results showed that the photolysis of BPS occurred under UV light, and the rate increased with light source intensity. The photolysis of 5.0-50.0 mg/L BPS in water followed first-order kinetics: the rate was γ= 0.0161CBPS under a 40-W UV-lamp, and the degradation half-life was 43.1 min. Due to its absorption of light, direct photolysis of BPS was a predominant pathway for BPS but was not obviously affected by reactive oxygen species. The results confirmed that the photolysis rates of BPS in alkaline water solution were faster than those in acidic and neutral water solution because of the ionization of BPS. The photodegradation rate of BPS increased in the presence of chloride and ferric ions, while the rate was inhibited by nitrate and phosphate in aqueous solution.  相似文献   

6.
Three treatments, sediment plus lake water (S+W), sterilized sediment plus lake water (SS+W), and sediment plus filtered lake water (S+FW), were recruited to investigate the growth characteristics of algae during pre-bloom and the importance of algal inocula in the water column and sediment. The results showed that in the water column, biomass of all algae increased in all treatments when recruitment was initiated, whereas this tendency differed among treatments with further increment of temperature. The process of algal growth consisted of two stages: Stage I, the onset of recruitment and Stage II, the subsequent growth of algae. Compared with S+W, in Stage I, SS+W significantly increased the biomass of cyanophytes by 178.70%, and decreased the biomass of non-cyanophytes by 43.40%; In Stage II, SS+W notably stimulated the growth of all algae, thus incurring the occurrence of phytoplankton bloom. Further analyses revealed that both metabolic activity and photochemical activity of algae were enhanced in SS+W, which resulted from the releasing of nutrients from sediment. These results suggest that algal growth in Stage II and algal inocula in the water column can be important factors for the formation of phytoplankton bloom. In addition, possible mechanisms promoting algal recruitment and subsequent growth of algae were explored.  相似文献   

7.
A cyanobacterial (Arthrospira platensis) bloom was induced in situ by nutrient manipulation in an enclosure. The succession of the phytoplankton community and the water chemistry variations before the appearance of bloom, as well as their relationship, were investigated. The cell pigment variations were studied simultaneously. The Pearson’s correlation analysis showed that there was no significant correlation between water chemistry and green algal or cyanobacterial composition, indicating that water chemistry variations were not suitable to be used as indicators for cyanobacterial-bloom early-warning. However, the diversity index of the phytoplankton community decreased sharply before the bloom appeared. Therefore, the dynamics of phytoplankton community was put forward to be an indicator for cyanobacterial-bloom early-warning. In addition, the cell pigment variations represented the changes of community structure, which should be useful for studying the dynamics of phytoplankton community.  相似文献   

8.
Understanding the process of the changing phytoplankton patterns can be particularly useful in water quality improvement and management decisions.However,it is generally not easy to illustrate the interactions between phytoplankton biomass and related environmental variables given their high spatial and temporal heterogeneity.To elucidate relationships between them,in a eutrophic shallow lake,Taihu Lake,relative long-term data set of biotic and abiotic parameters of water quality in the lake were conducted using multivariate statistical analysis within seasonal periodicity.The results indicate that water temperature and total phosphorus(TP)played governing roles in phytoplankton dynamics in most seasons(i.e.temperature in winter,spring and summer; TP in spring,summer and autumn); COD(chemical oxygen demand)and BOD(biological oxygen demand)presented significant positive relationships with phytoplankton biomass in spring,summer and autumn.However,a complex interplay was found between phytoplankton biomass and nitrogen considering significant positive relationships occurring between them in spring and autumn,and conversely negative ones in summer.As the predatory factor,zooplankton presented significant grazing-pressure on phytoplankton biomass during summer in view of negative relationship between them in the season.Significant feedback effects of phytoplankton development were identified in summer and autumn in view that significant relationships were observed between phytoplankton biomass and pH,Trans(transparency of water)and DO.The results indicate that interactions between phytoplankton biomass and related environmental variables are highly sensitive to seasonal periodicity,which improves understanding of different roles of biotic and abiotic variables upon phytoplankton variability,and hence,advances management methods for eutrophic lakes.  相似文献   

9.
Understanding the process of the changing phytoplankton patterns can be particularly useful in water quality improvement and management decisions. However, it is generally not easy to illustrate the interactions between phytoplankton biomass and related environmental variables given their high spatial and temporal heterogeneity. To elucidate relationships between them, in a eutrophic shallow lake, Taihu Lake, relative long-term data set of biotic and abiotic parameters of water quality in the lake were conducted using multivariate statistical analysis within seasonal periodicity. The results indicate that water temperature and total phosphorus (TP) played governing roles in phytoplankton dynamics in most seasons (i.e. temperature in winter, spring and summer; TP in spring, summer and autumn); COD (chemical oxygen demand) and BOD (biological oxygen demand) presented significant positive relationships with phytoplankton biomass in spring, summer and autumn. However, a complex interplay was found between phytoplankton biomass and nitrogen considering significant positive relationships occurring between them in spring and autumn, and conversely negative ones in summer. As the predatory factor, zooplankton presented significant grazing-pressure on phytoplankton biomass during summer in view of negative relationship between them in the season. Significant feedback effects of phytoplankton development were identified in summer and autumn in view that significant relationships were obser,qed between phytoplankton biomass and pH, Trans (transparency of water) and DO. The results indicate that interactions between phyto:plankton biomass and related environmental variables are highly sensitive to seasonal periodicity, which improves understanding of different roles of biotic and abiotic variables upon phytoplankton variability, and hence, advances management methods for eutrophic lakes.  相似文献   

10.
Temporal and spatial changes of total nitrogen (TN), total phosphorus (TP) and chlorophyll-a (Chl-a) in a shallow lake, Lake Chaohu, China, were investigated using monthly monitoring data from 2001 through 2011. The results showed that the annual mean concentration ranges of TN, TP, and Chl-a were 0.08-14.60 mg/L, 0.02-1.08 mg/L, and 0.10-465.90 μg/L, respectively. Our data showed that Lake Chaohu was highly eutrophic and that water quality showed no substantial improvement during 2001 through 2011. The mean concentrations of TP, TN and Chl-a in the western lake were significantly higher than in the eastern lake, which indicates a spatial distribution of the three water parameters. The annual mean ratio of TN:TP by weight ranged from 10 to 20, indicating that phosphorus was the limiting nutrient in this lake. A similar seasonality variation for TP and Chl-a was observed. Riverine TP and NH4+ loading from eight major tributaries were in the range of 1.56×104-5.47×104 and 0.19×104-0.51×104 tons/yr over 2002-2011, respectively, and exceeded the water environmental capability of the two nutrients in the lake by a factor of 3-6. Thus reduction of nutrient loading in the sub-watershed and tributaries would be essential for the restoration of Lake Chaohu.  相似文献   

11.
基于Copula函数的水体富营养化联合风险概率研究   总被引:2,自引:0,他引:2  
张彦  窦明  李桂秋 《环境科学学报》2018,38(10):4204-4213
为了分析小型人工湖水体富营养化指标联合风险发生的概率,基于Copula函数的基本原理,结合眉湖水体富营养化模型模拟结果,建立了水体富营养化指标的边缘分布及Copula函数联合概率分布.通过Copula函数拟合检验和拟合优度评价筛选出不同组合方式下最优的Copula函数,并根据最优的Copula函数计算出水体富营养化指标的二维和三维联合风险概率.结果表明,不同组合方式下水体富营养化指标达到不同富营养化状态时的联合风险概率区别较大;当Chl-a和COD都为轻度富营养时,二维联合风险概率最大为62.29%,说明这种组合方式下眉湖水体极易发生轻度富营养;当Chl-a和COD都为轻度富营养、TN为中度富营养时,三维联合风险概率最大为45.46%,说明这种组合方式下眉湖水体极易发生中度富营养;由于受到水体富营养化指标监测系列的影响,部分二维和三维联合风险概率较小甚至为零.  相似文献   

12.
中国主要河口海湾富营养化特征及差异分析   总被引:6,自引:0,他引:6  
针对我国65个沿海河口海湾,基于自然地理数据及2007~2012年水质监测数据,采用箱须图法、聚类分析、相关性分析和主成分分析等方法,探讨河口海湾间富营养化特征、差异性及主要原因.结果表明,大型河口海湾的富营养化状态指标值相对较高,但河口海湾间富营养化响应指标值存在一定差异.DIN、PO43--P和COD是河口海湾富营养化特征的第1主成分,DO和Chl-a是第2主成分,盐度、水深、潮差和面积等是第3主成分,河口海湾水体Chl-a浓度与TN入海量(P<0.01)、DIN(P<0.01)、PO43--P(P<0.05)、流量(P<0.01)、温度(P<0.05)呈显著性正相关,同时与潮差(P<0.05)和盐度(P<0.01)和DO(P<0.01)呈显著性负相关.表明营养盐入海量增多是引起河口海湾一系列富营养化症状的主要因素,但河口海湾自然属性会调节其富营养化状态,造成系统间响应特征的差异.潮差小于2.5m的河口海湾,其营养盐转化效率明显高于潮差大于2.5m的河口海湾.说明河口海湾潮差可通过改变水体滞留时间、垂直混合和光照条件等,调节浮游植物生物量对营养盐的敏感性.此外,与外海的水体交换,海洋生物的捕食,及其他形态营养盐的供给等作用,也会影响河口海湾水体Chl-a的水平.人类活动带来的营养盐输入,以及河口海湾特有的自然属性,共同决定了其富营养化特征的差异和程度.  相似文献   

13.
模糊数学在香溪河库湾富营养化评价中的应用   总被引:3,自引:0,他引:3  
三峡水库蓄水后,部分支流库湾水体富营养化严重。以香溪河库湾为例,采用模糊数学评价法,通过引入隶属度的概念,对该库湾2010年全年不同断面水质进行富营养化评价,同时与综合营养状态指数评价法比较。结果表明:2种方法结果存在一定差异,但均反映了2010年香溪河库湾处于中营养化至重度富营养化,春夏季富营养化情势较其他季节严重,库湾上游处于中度富营养化,4月上游甚至为重度富营养化,下游处于轻度富营养化;秋冬季库湾营养状态分布较均匀,为中营养和轻度富营养化。该结果与实地观测结果相符。由此可见,模糊数学评价法较好的反映水质级别的模糊性与连续性,以及各因子共同作用下的水质状况,可在三峡水库支流库湾富营养化评价中得到应用。  相似文献   

14.
南湖富营养化主要控制因子分析   总被引:23,自引:0,他引:23  
全面分析了南湖湖泊系统中营养物之间、营养物与藻类生长之间的相互关系,探讨了各种环境因子对南湖富营养化的影响,结合藻类增长潜力试验结果确定南湖富营养化的主要控制因子。结果表明,光、温度、碳、氮不能成为南湖富营养化的主要控制因子,控制南湖富营养化的关键在于控制磷。   相似文献   

15.
山仔水库富营养化动态研究   总被引:1,自引:0,他引:1  
以山仔水库库区水体为研究对象,通过测定水体透明度、叶绿素、总磷含量,应用卡尔森TSI营养指数法和层次分析法,并结合往年监测数据对山仔水库营养化程度进行分析,此外还运用Arc/Info的克里格插值法进行富营养化空间格局分析,最后提出防治对策。分析结果表明:近年来水库富营养化程度不断上升,随季节和降雨的变化出现较大的波动,在空间分布上也出现较大的变化。  相似文献   

16.
目前富营养化评价方法众多,但各评价方法之间缺乏可比性,不利于湖泊富营养化的有效管理和治理.本文在对现有湖泊富营养化的评价方法进行分析、评价的基础上,从湖泊水生生态系统出发,提出了适合我国国情的基于<地表水环境质量标准>(GB3838-2002)的湖泊富营养化水生生态系统评价方法.即水质、水生生物与底质评价相结合的系统的、综合的富营养化评价方法.该方法可对不同湖泊的富营养化状况进行比较,并可对同一湖泊富营养化的时空变化进行分析,有利于对湖泊富营养化程度、成因做出客观、合理的判断,为治理富营养化提供全面、科学的决策依据.  相似文献   

17.
陈洁  钱会 《环境工程》2017,35(8):130-134
根据湖泊水环境系统的不确定性,建立了基于随机模拟和三角模糊数的湖泊水体富营养化评价耦合模型,采用三角模糊数表征各营养因子监测值,运用随机模拟方法模拟三角模糊数,得到各变量的随机模拟序列,由综合营养状态指数法确定湖泊的营养等级概率水平。以宁夏沙湖为例,运用此耦合模型对水体的富营养化程度进行评价。结果表明:该方法将水体富营养评价中水环境状态的不确定性以确定性方法融入评价模型,直观表征了水体在各营养状态隶属度的复杂性,评价结果更加全面、合理。  相似文献   

18.
2种组配改良剂修复镉砷复合污染稻田土壤的研究   总被引:5,自引:0,他引:5  
将2种复合改良剂LI(碳酸钙+铁粉)和HI(羟基磷灰石+铁粉)施加于镉、砷复合污染稻田土壤,设置投加比例分别为1∶2、1∶1、2∶1,通过分析熟化后土壤的p H值、毒性浸出(TCLP提取态)镉、砷含量及交换态镉和砷含量,研究了复合改良剂同时固定这两种污染元素的效果.结果表明,施加LI使土壤p H值提高了0.60~1.21,降低了土壤TCLP提取态镉、交换态镉含量,以及TCLP提取态砷和交换态砷含量;与对照相比,配比为2∶1的LI使土壤TCLP提取态镉含量降低了60.97%,效果较好;配比为1∶2和1∶1的LI分别使TCLP提取态砷含量降低了29.81%、29.85%;配比为1∶2的LI使交换态砷含量降低了55.18%.施加HI同样提高了土壤的p H值(升高了0.51~0.73),同时降低了土壤中97.05%~98.09%的TCLP提取态镉含量,效果显著;施加HI略微提高了土壤TCLP提取态砷含量,但却略微降低了土壤交换态砷含量.在本实验条件下,综合考虑土壤中镉和砷的稳定化效果,LI的效果明显好于HI.其中,从TCLP提取态镉和砷含量来评价,2∶1的LI施用效果最佳;从交换态镉和砷含量来评价,1∶2的LI施用效果最佳.  相似文献   

19.
磷是滨海湿地生产力的关键限制因素之一,有机磷的矿化分解是湿地活性磷的重要补充途径。本文以滨海荣成天鹅湖湿地为研究对象,通过采集不同季节、不同点位的表层水样,利用酶水解技术研究了天鹅湖水体有机磷的生物有效性及其时空变化规律。研究表明:(1)天鹅湖已经出现轻度富营养化。有机磷是天鹅湖水体总磷(TP)重要组成部分,其中溶解态有机磷(DOP)的含量为0.039~0.123 mg/L,占水体TP的29%~74%,颗粒态有机磷(POP)的含量为0.011~0.073mg/L,占水体TP的11%~25%。(2)在有机磷中,24%~31%的DOP和41%~82%的POP是潜在的生物可利用磷。(3)天鹅湖DOP遵循春夏高而秋冬含量低的特点。有机磷空间分布非均一性,DOP主要分布在湖中区和入河口区。POP集中分布在北部入河口和湖心区及其北部沙滩区域。另外,通过相关性分析表明,有机磷与水环境因子关系密切,DOP和溶解态酶水解有机磷(DEHP)的含量可以指示水体富营养化程度。总之,水体有机磷循环供磷可能是造成水体富营养化的重要原因。因此,在富营养化的防治过程中应该采取有效措施防治有机磷的矿化。  相似文献   

20.
The vine mealybug (VM) females collected in Israel produce two sex pheromone compounds: lavandulyl senecioate (LS) and (S)-lavandulyl isovalerate (LI). The males display ambiguous behavior to LI: repulsion in the vineyard and attraction of laboratory-reared males. We addressed the question of individual male behavior, i.e., do males respond to both LS and LI, or might they display a distinct response to each of the two pheromone compounds. We compared male pherotype frequencies between wild-caught and laboratory-reared populations. Then, we examined the relationship between pherotype composition and male capture rates in pheromone traps. Finally, we addressed the heredity of the pherotypes. The Israeli VM populations contain nine different male pherotypes, as defined according to the male behavior to pheromone compounds. The studied Portuguese populations included five of the nine pherotypes; none of the Portuguese males were attracted to LI. It seems that the high frequency of males that were attracted to LI is related to dense VM populations. It is hypothesized that selection for the male pherotypes, I males, those that respond to LI, occur under high-density rearing conditions. This may result from shorter development times of males and females that produce more I male pherotypes. The lower relative frequency of trapping of males in LI-baited traps than expected from the percentage determined in a Petri dish arena suggests that males that respond solely to LS (S males) are better fliers. The results also suggest that the pherotype trait is inherited by both sexes of the VM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号