首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of queen pheromones on worker honey bee ovary development   总被引:11,自引:4,他引:11  
We report results that address a long-standing controversy in honey bee biology, the identity of the queen-produced compounds that inhibit worker honey bee ovary development. As the honey bee is the only organism for which identities have been proposed for any pheromone that regulates reproduction, the resolution of its identity is of broad significance. We examined the effects of synthetic honey bee queen mandibular pheromone (QMP), four newly identified queen retinue pheromone components, and whole-queen extracts on the ovary development of caged worker bees. The newly identified compounds did not inhibit worker ovary development alone, nor did they improve the efficacy of QMP when applied in combination. QMP was as effective as queen extracts at ovary regulation. Caged workers in the QMP and queen extract treatments had better developed ovaries than did workers remaining in queenright colonies. We conclude that QMP is responsible for the ovary-regulating pheromonal capability of queens from European-derived Apis mellifera subspecies.  相似文献   

2.
Explanations for the evolution of multiple mating by social insect (particularly honey bee) queens have been frequently sought. An important hypothesis is that multiple mating is adaptive because it increases intracolonial genetic diversity and thereby reduces the likelihood that parasites or pathogens will catastrophically infect a colony. We tested one assumption of this model: that honey bee worker patrilines should differ in disease resistance. We used American foulbrood (caused by the bacterium Paenibacillus larvae) as a model pathogen. We found that patrilines within colonies do indeed vary in their resistance to this disease.  相似文献   

3.
Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6?±?6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ?≤?7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e ?>?7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.  相似文献   

4.
In many social taxa, reproductively dominant individuals sometimes use aggression to secure and maintain reproductive status. In the social insects, queen aggression towards subordinate individuals or workers has been documented and is predicted to occur only in species with a small colony size and a low level of queen–worker dimorphism. We report queen aggression towards reproductive workers in the ant species Aphaenogaster cockerelli, a species with a relatively large colony size and a high level of reproductive dimorphism. Through analysis of cuticular hydrocarbon profiles, we show that queens are aggressive only to reproductively active workers. Non-reproductive workers treated with a hydrocarbon typical for reproductives are attacked by workers but not by queens, which suggests different ways of recognition. We provide possible explanations of why queen aggression is observed in this species.  相似文献   

5.
Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit (“police”) worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers’ sons instead of queens’ sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027–2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.  相似文献   

6.
In social hymenoptera, the reproductive division of labor is often linked to differences in individual body size with the reproductive caste (the queen) being larger than the workers. Likewise, the reproductive potential may vary with size within the worker caste and could affect the evolution of worker size in social insects. Here, we tested the relationship between worker size and reproductive potential in the facultative parthenogenetic ant Cataglyphis cursor. Colonies are headed by a multiply mated queen, but workers can produce gynes (virgin queens) and workers by thelytokous parthenogenesis after the queen's death. We observed the behaviour of workers (n = 357) until the production of gynes (212 h over 3 months) in an orphaned colony (mated queen not present). The size of workers was measured, and their paternal lineage determined using six microsatellite markers, to control for an effect of patriline. Larger workers were more likely to reproduce and lay more eggs indicating that individual level selection could take place. However, paternal lineage had no effect on the reproductive potential and worker size. From the behavioural and genetic data, we also show for the first time in this species, evidence of aggressive interactions among workers and a potential for nepotism to occur in orphaned colonies, as the five gynes produced belonged to a single paternal lineage.  相似文献   

7.
Evolution of caste is a central issue in the biology of social insects. Comparative studies on their morphology so far suggest the following three patterns: (1) a positive correlation between queen–worker size dimorphism and the divergence in reproductive ability between castes, (2) a negative correlation among workers between morphological diversity and reproductive ability, and (3) a positive correlation between queen–worker body shape difference and the diversity in worker morphology. We conducted morphological comparisons between castes in Pachycondyla luteipes, workers of which are monomorphic and lack their reproductive ability. Although the size distribution broadly overlapped, mean head width, head length, and scape length were significantly different between queens and workers. Conversely, in eye length, petiole width, and Weber’s length, the size differences were reversed. The allometries (head length/head width, scape length/head width, and Weber’s length/head width) were also significantly different between queens and workers. Morphological examinations showed that the body shape was different between queens and workers, and the head part of workers was disproportionately larger than that of queens. This pattern of queen–worker dimorphism is novel in ants with monomorphic workers and a clear exception to the last pattern. This study suggests that it is possible that the loss of individual-level selection, the lack of reproductive ability, influences morphological modification in ants.  相似文献   

8.
Reproductive division of labour is a characteristic trait of social insects. The dominant reproductive individual, often the queen, uses chemical communication and/or behaviour to maintain her social status. Queens of many social insects communicate their fertility status via cuticle-bound substances. As these substances usually possess a low volatility, their range in queen–worker communication is potentially limited. Here, we investigate the range and impact of behavioural and chemical queen signals on workers of the ant Temnothorax longispinosus. We compared the behaviour and ovary development of workers subjected to three different treatments: workers with direct chemical and physical contact to the queen, those solely under the influence of volatile queen substances and those entirely separated from the queen. In addition to short-ranged queen signals preventing ovary development in workers, we discovered a novel secondary pathway influencing worker behaviour. Workers with no physical contact to the queen, but exposed to volatile substances, started to develop their ovaries, but did not change their behaviour compared to workers in direct contact to the queen. In contrast, workers in queen-separated groups showed both increased ovary development and aggressive dominance interactions. We conclude that T. longispinosus queens influence worker ovary development and behaviour via two independent signals, both ensuring social harmony within the colony.  相似文献   

9.
In eusocial Hymenoptera, queen control over workers is probably inseparable from the mechanism of queen recognition. In primitively eusocial bumblebees (Bombus), worker reproduction is controlled not only by the presence or absence of a dominant queen but also by other dominant workers. Furthermore, it was shown that the queen dominance is maintained by pheromonal cues. We investigated whether there is a similar odor signal released by egg-laying queens and workers that may have a function as a fertility signal. We collected cuticular surface extracts from nest-searching and breeding Bombus terrestris queens and workers that were characterized by their ovarian stages. In chemical analyses, we identified 61 compounds consisting of aldehydes, alkanes, alkenes, and fatty acid esters. Nest-searching queens and all groups of breeding females differed significantly in their odor bouquets. Furthermore, workers before the competition point (time point of colony development where workers start to develop ovaries and lay eggs) differed largely from queens and all other groups of workers. Breeding queens showed a unique bouquet of chemical compounds and certain queen-specific compounds, and the differences toward workers decrease with an increasing development of the workers' ovaries, hinting the presence of a reliable fertility signal. Among the worker groups, the smallest differences were found after the competition point. Egg-laying females contained higher total amounts of chemical compounds and of relative proportions of wax-type esters and aldehydes than nest-searching queens and workers before the competition point. Therefore, these compounds may have a function as a fertility signal present in queens and workers.  相似文献   

10.

Social interactions may shape brain development. In primitively eusocial insects, the mushroom body (MB), an area of the brain associated with sensory integration and learning, is larger in queens than in workers. This may reflect a strategy of neural investment in queens or it may be a plastic response to social interactions in the nest. Here, we show that nest foundresses—the reproductive females who will become queens but are solitary until their first workers are born—have larger MBs than workers in the primitively eusocial sweat bee Augochlorella aurata. Whole brain size and optic lobe size do not differ between the two groups, but foundresses also have larger antennal lobes than workers. This shows that increased neural investment in MBs precedes social group formation. Larger MBs among foundresses may reflect the increased larval nutrition provisioned to future queens and the lack of social aggression from a dominant queen upon adult emergence.

  相似文献   

11.
Multiple mating by females with different males (polyandry) is difficult to explain in many taxa because it carries significant costs to females, yet benefits are often hard to identify. Polyandry is a derived trait in social insects, the evolutionary origins of which remain unclear. One of several leading hypotheses for its evolution is that it improves division of labour by increasing intra-colonial genetic diversity. Division of labour is a key player in the ecological success of social insects, and in many successful species of ants is based on morphologically distinct castes of workers, each with their own task specialisations. Atta leaf-cutting ants exhibit one of the most extreme and complicated forms of morphologically specialised worker castes and have been reported to be polyandrous but with relatively low mating frequencies (~2.5 on average). Here, we show for the first time that there is a significant genetic influence on worker size in Atta colombica leaf-cutting ants. We also provide the first estimate of the mating frequency of Atta cephalotes (four matings) and, by analysing much higher within-colony sample sizes, find that Atta are more polyandrous than previously thought (approximately six to seven matings). The results show that high polyandry and a genetic influence on worker caste are present in both genera of leaf-cutting ants and add weight to the hypothesis that division of labour is a potential driver of the evolution of polyandry in this clade of ants.  相似文献   

12.
In the Cape honey bee Apis mellifera capensis, workers lay female eggs without mating by thelytokous parthenogenesis. As a result, workers are as related to worker-laid eggs as they are to queen-laid eggs and therefore worker policing is expected to be lower, or even absent. This was tested by transferring worker- and queen-laid eggs into three queenright A. m. capensis discriminator colonies and monitoring their removal. Our results show that worker policing is variable in A. m. capensis and that in one colony worker-laid eggs were not removed. This is the first report of a non-policing queenright honey bee colony. DNA microsatellite and morphometric analysis suggests that the racial composition of the three discriminator colonies was different. The variation in policing rates could be explained by differences in degrees of hybridisation between A. m. capensis and A. m. scutellata, although a larger survey is needed to confirm this.  相似文献   

13.
In the honeybee, Apis mellifera, the queen monopolizes reproduction, while the sterile workers cooperate harmoniously in nest maintenance. However, under queenless (QL) conditions, cooperation collapses and reproductive competition among workers ensues. This is mediated through aggression and worker oviposition, as well as shifts in pheromones, from worker to queen-like composition. Many studies suggest a dichotomy between conflict resolution through aggression or through pheromonal signaling. In this paper, we demonstrate that both phenomena comprise essential components of reproductive competition and that pheromone signaling actually triggers the onset of aggression. We kept workers as QL groups until first aggression was observed and subsequently determined the contestants' reproductive status and content of the mandibular (MG) and Dufour's glands (DG). In groups in which aggression occurred early, the attacked bee had consistently more queen-like pheromone in both the MG and DG, although both contestants had undeveloped ovaries. In groups with late aggression, the attacked bee had consistently larger oocytes and more queen-like pheromone in the DG, but not the MG. We suggest that at early stages of competition, the MG secretion is utilized to establish dominance and that the DG provides an honest fertility signal. We further argue that it is the higher amount of DG pheromone that triggers aggression.  相似文献   

14.
In ants, winged queens that are specialized for independent colony foundation can be replaced by wingless reproductives better adapted for colony fission. We studied this shift in reproductive strategy by comparing two Mystrium species from Madagascar using morphometry, allometry and dissections. Mystrium rogeri has a single dealate queen in each colony with a larger thorax than workers and similar mandibles that allow these queens to hunt during non-claustral foundation. In contrast, Mystrium ‘red’ lacks winged queens and half of the female adults belong to a wingless ‘intermorph’ caste smaller and allometrically distinct from the workers. Intermorphs have functional ovaries and spermatheca while those of workers are degenerate. Intermorphs care for brood and a few mate and reproduce making them an all-purpose caste that takes charge of both work and reproduction. However, their mandibles are reduced and inappropriate for hunting centipedes, unlike the workers’ mandibles. This together with their small thorax disallow them to perform independent colony foundation, and colonies reproduce by fission. M. rogeri workers have mandibles polymorphic in size and shape, which allow for all tasks from brood care to hunting. In M. ‘red’, colonial investment in reproduction has shifted from producing expensive winged queens to more numerous helpers. M. ‘red’ intermorphs are the first case of reproductives smaller than workers in ants and illustrate their potential to diversify their caste system for better colonial economy.  相似文献   

15.
In a recent study, Denny et al. (2004a) showed that queens of the army ant, Eciton burchellii, mate with multiple males and presented estimates suggesting that they mate with more males than queens of any other ant species so far investigated. They also inferred that data were consistent with queens being inseminated repeatedly throughout their life, which would be exceptional among the social Hymenoptera and contradictory to predictions from kin selection theory. In the present study, we reanalyze these data using new software and supplement them with similar microsatellite data from other colonies of the same species. Mating frequencies in E. burchellii are indeed very high (mean observed and effective queen-mating frequencies of 12.9 each) but considerably lower than the previous estimates. We show that the number of patrilines represented in the first worker offspring of a young queen is lower than in older queens but suggest that this may be due to initial sperm clumping in the queen’s sperm storage organ, rather than to repeated inseminations. Moreover, we found no evidence for repeated mating by genotyping sequential worker generations produced by a single old queen, showing that she did not obtain new inseminations despite ample opportunities for mating.  相似文献   

16.
17.
With the exception of several species, bumblebees are monandrous. We examined mating frequency in feral colonies of the introduced bumblebee Bombus terrestris in Japan. Using microsatellite markers, genotyping of sperm DNA stored in the spermatheca of nine queens detected multiple insemination paternities in one queen; the others were singly mated. The average effective paternity frequency estimated from the genotypes of queens and workers was 1.23; that estimated from the workers’ genotype alone was 2.12. These values were greater than those of laboratory-reared colonies in the native ranges of B. terrestris. The genotypes of one or two workers did not match those of their queens or showed paternities different from those of their nestmates; this may have arisen from either queen takeover or drifting of workers. These alien workers were responsible for the heterogeneous genotype distribution within each B. terrestris colony, resulting in higher estimates of paternity frequency than of insemination frequency. The high mating frequency of introduced B. terrestris may have occurred by artificial selection through mass breeding for commercialization. Moreover, polyandrous queens may be selectively advantageous, because reproduction by such queens is less likely to be disturbed by interspecific mating than that by monandrous queens.  相似文献   

18.
Pheromonal signals associated with queen and worker policing prevent worker reproduction and have been identified as important factors for establishing harmony in the honeybee (Apis mellifera) colony. However, "anarchic workers", which can evade both mechanisms, have been detected at low frequency in several honeybee populations. Worker bees of the Cape honeybee, Apis mellifera capensis, also show this anarchistic trait but to an extreme degree. They can develop into so called "pseudoqueens", which release a pheromonal bouquet very similar to that of queens. They prime and release very similar reactions in sterile workers to those of true queens (e.g. suppress ovary activation; release retinue behavior). Here we show in an experimental bioassay that lethal fights between these parasitic workers and the queen (similar to queen–queen fights) occur, resulting in the death of either queen or worker. Although it is usually the queen that attacks the parasitic workers and kills many of them, in a few cases the workers succeeded in killing the queen. If this also occurs in a parasitized colony where the queen encounters many parasitic workers, she may eventually be killed in one of the repeated fights she engages in.  相似文献   

19.
Unlike normal (wild type) honey bee ( Apis mellifera) colonies, 'anarchistic' colonies are characterised by workers that activate their ovaries in the presence of the queen and brood and by the ability of their workers to lay eggs that evade worker policing. In the Cape honey bee ( A. m. capensis), female larvae can manipulate non- capensis nurse workers such that they receive more larval food and develop into worker-queen intermediates or intercastes. We speculated that, in anarchistic colonies, larvae might produce signals that result in excessive feeding of female larvae. Excessively fed female larvae may then develop into reproductively active workers. In this study we cross-fostered anarchistic and wild type brood and investigated the effect of cross-fostering on the amount of food fed to larvae and on the morphology of the resulting workers. We show that anarchistic larvae do not manipulate wild type nurse workers into feeding them more, nor do anarchistic workers develop into worker-queen intermediates. On the contrary, anarchistic larvae are fed less than wild type larvae and anarchistic workers seem to be poor nurses in that they feed larvae less, irrespective of brood genotype.  相似文献   

20.
The potential for reproductive conflict among colony members exists in all social insect societies. For example, queens and workers may be in conflict over the production of males within colonies. Kin selection theory predicts that in a colony headed by a multiply-mated queen, worker reproduction is prevented by worker policing in the form of differential oophagy. However, few studies have demonstrated that workers actually lay eggs within queenright colonies. The purpose of this study was to determine if workers laid male eggs within unmanipulated queen-right colonies of the polyandrous social wasps Vespula maculifrons and V. squamosa. We focused our analysis on an unusual brood pattern within colonies, multiple egg cells. We were primarily interested in determining if individuals reared in these irregular circumstances were queen or worker offspring. To address this question, we genotyped 318 eggs from eight V. maculifrons and two V. squamosa colonies. No worker‑reproduction was detected in any of the queenright colonies; all of the eggs found in multiple egg cells were consistent with being queen‑produced. However, the frequency of multiple egg cells differed among colonies, suggesting that queens vary in the frequency of errors they make when laying eggs within cells. Finally, we suggest that workers may not be laying eggs within queenright colonies and that worker reproduction may be controlled through mechanisms other than differential oophagy in polyandrous Vespula wasps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号