首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Concentrations of atmospheric PM10 and chemical components (including twenty-one elements, nine ions, organic carbon (OC) and elemental carbon (EC)) were measured at five sites in a heavily industrial region of Shenzhen, China in 2005. Results showed that PM10 concentrations exhibited the highest values at 264 μg/m3 at the site near a harbor with the influence of harbor activities. Sulfur exhibited the highest concentrations (from 2419 to 3995 ng/m3) of all the studied elements, which may be related to the influence of coal used as fuel in this area for industrial plants. This was verified by the high mass percentages of SO42-, which accounted for 34.3%-39.7% of the total ions. NO3-/SO42- ratios varied from 0.64-0.71, which implies coal combustion was predominant compared with vehicle emission. The anion/cation ratios range was close to 0.95, indicating anion deficiency in this region. The harbor site showed the highest OC and EC concentrations, with the influence of emission from vessels. Secondary organic carbon accounted for about 22.6%-38.7% of OC, with the highest percentage occurring at the site adjacent to a coal-fired power plant and wood plant. The mass closure model performed well in this heavily industrial region, with significant correlation obtained between chemically determined and gravimetrically measured PM10 mass. The main constituents of PM10 were found to be organic materials (30.9%-69.5%), followed by secondary inorganic aerosol (7.9%-25.0%), crustal materials (6.7%-13.8%), elemental carbon (3.5%-10.8%), sea salt (2.4%-6.2%) and trace elements (2.0%-4.9%) in this heavily industrialized region. Principal component analysis indicated that the main sources for particulate matter in this industrial region were crustal materials and coal/wood combustion, oil combustion, secondary aerosols, industrial processes and vehicle emission.  相似文献   

2.
Rice husk with high volatile content was burned in a pilot scale vortexing fluidized bed incinerator. The fluidized bed incinerator was constructed of 6 mm stainless steel with 0.45 m in diameter and 5 m in height. The emission characteristics of CO, NO, and SO2 were studied. The effects of operating parameters, such as primary air flow rate, secondary air flow rate, and excess air ratio on the pollutant emissions were also investigated. The results show that a large proportion of combustion occurs at the bed surface and the freeboard zone. The SO2 concentration in the flue gas decreases with increasing excess air ratio, while the NOx concentration shows reverse trend. The flow rate of secondary air has a significant impact on the CO emission. For a fixed primary air flowrate, CO emission decreases with the secondary air flowrate. For a fixed excess air ratio, CO emission decreases with the ratio of secondary to primary air flow. The minimum CO emission of 72 ppm is attained at the operating condition of 40% excess air ratio and 0.6 partition air ratio. The NOx and SO2 concentrations in the flue gas at this condition are 159 and 36 ppm, which conform to the EPA regulation of Taiwan.  相似文献   

3.
The aim of this work was to determine the level of benzene, toluene, o-xylene and m, p-xylene (BTX) in air samples collected from the cabins of new and used vehicles of the same model. Ten new vehicles were examined in order to check interior emission from materials used to equip the passenger compartment. In order to compare and define the impact of exhaust gases, air samples were also collected from two used cars, at different mileages (up to 20,000 kin). All vehicles tested were of the same type. Samples were collected onto Carbograph 1TD sorbent, thermally desorbed and examined with the use of gas chromatography with flame ionisation and mass spectrometry detectors. All results obtained were referred to Polish and German requirements for indoor air quality (both in public buildings and in workspace environments). Average benzene, toluene, o-xylene and m, p-xylene concentrations in new cars were determined at the level of 11.8 μg/m^3, 82.7 μg/m^3, 21.2 μg/m^3 and 89.5 μg/m^3, respectively. In the used cars, BTX concentration increased with increasing vehicle mileage. The most significant increase of BTX concentration was observed above 11,000 km mileage.  相似文献   

4.
The distribution and source of the solvent-extractable organic and inorganic components in PM 2.5(aerodynamics equivalent diameter below 2.5 microns),and PM 10(aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly from September 2006 to August 2007 in Beijing.The extracted organic and inorganic compounds identified in both particle size ranges consisted of n-alkanes,PAHs(polycyclic aromatic hydrocarbons),fatty acids and water soluble ions.The potential emission sources of these organic compounds were reconciled by combining the values of n-alkane carbon preference index(CPI),%waxC n,selected diagnostic ratios of PAHs and principal component analysis in both size ranges.The mean cumulative concentrations of n-alkanes reached 1128.65ng/m3 in Beijing,74% of which(i.e.,831.7ng/m3) was in the PM 2.5 fraction,PAHs reached 136.45ng/m3(113.44ng/m3 or 83% in PM 2.5),and fatty acids reached 436.99ng/m3(324.41ng/m3 or 74% in PM 2.5),which resulted in overall enrichment in the fine particles.The average concentrations of SO42-,NO3-,and NH4+ were 21.3±15.2,6.1±1.8,12.5±6.1μg/m3 in PM 2.5,and 25.8±15.5,8.9±2.6,16.9±9.5μg/m3 in PM 10,respectively.These three secondary ions primarily existed as ammonium sulfate((NH4)2SO4),ammonium bisulfate(NH4HSO4) and ammonium nitrate(NH4NO3).The characteristic ratios of PAHs revealed that the primary sources of PAHs were coal combustion,followed by gasoline combustion.The ratios of stearic/palmitic acid indicated the major contribution of vehicle emissions to fatty acids in airborne particles.The major alkane sources were biogenic sources and fossil fuel combustion.The major sources of PAHs were vehicular emission and coal combustion.  相似文献   

5.
Fe203 particle catalysts were experimentally studied in the low temperature selective catalytic reduction (SCR) of NO with NH3. The effects of reaction temperature, oxygen concentration, [NH3]/[NO] molar ratio and residence time on SCR activity were studied. It was found that Fe203 catalysts had high activity for the SCR of NO with NH3 in a broad temperature range of 150-270℃, and more than 95% NO conversion was obtained at 180℃ when the molar ratio [NH3]/[NO] = 1, the residence time was 0.48 seconds and 02 volume fraction was 3%. In addition, the effect of SO2 on SCR catalytic activity was also investigated at the temperature of 180℃. The results showed that deactivation of the Fe2O3 particles occurred due to the presence of SO2 and the NO conversion decreased from 99.2% to 58% in 240 min, since SO2 gradually decreased the catalytic activity of the catalysts. In addition, X-ray diffraction, Thermogravimetric analysis and Fourier transform infrared spectroscopy were used to characterize the fresh and deactivated Fe2O3 catalysts. The results showed that the deactivation caused by SO2 was due to the formation of metal sulfates and ammonium sulfates on the catalyst surface during the de-NO reaction, which could cause pore plugging and result in suppression of the catalytic activity.  相似文献   

6.
The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice–wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO_2 concentration elevated to ~ 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO_2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m~2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO_2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice–wheat field annual rotation ecosystem(p 0.05).  相似文献   

7.
O3and PM2.5were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors(SO2, NO2, O3, CO, PM2.5and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2and PM10were observed in 26 cities, and the pollutants O3, CO and PM2.5were measured in 15 of the 26 cities. The concentrations of SO2and CO were much higher in the cities in north China than those in the south. As for O3and NO2, however, there was no significant diference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5to PM10ranging from 55% to 77%. The concentrations of PM2.5(57.5 μg/m3) and PM10(91.2 μg/m3) were much higher than the values(PM2.5: 11.2 μg/m3; PM10 : 35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more eforts will to be taken to control air pollution in China.  相似文献   

8.
To investigate the characteristics of ground level ozone(O_3) for Henan Province,the ambient air quality monitoring data of 2015 and 2016 were analyzed.The result showed that the 8 h-max-O_3 concentrations displayed a distinct seasonality,where the maximum and minimum values,averaging 140.41,54.19 μg/m~3,occurred in summer and winter,respectively.There is a significant correlation between meteorological factors and O_3 concentration.The Voronoi neighborhood averaging analysis indic ated that O_3,temperature,and ultraviolet radiation in Henan province were decreased from northwest to southeast,while relative humidity and precipitation displayed the opposite trend.Besides meteorological factors,the chemical processes play an essential role in ozone formation.Reactions of NO,NO_2 and O_3 form a closed system,and the partitioning point of the OX-component(O_3+NO_2) was at 40 and 80 μg/m~3 for nitrogen oxide(NO_x) in winter and summer,respectively,with NO_2 dominating at higher NO_x pollution and O_3 being the m ajor component at lower levels.The relationship between oxidant(OX=O_3+NO_2)and NOx concentrations were evaluated to understand the regional and local contribution of OX.It showed that high regional contribution occurred in the spring,whereas the highest local contribution lead to the summer peak of O_3 observed in Zhengzhou.This present study reveals important environment impacts from the photochemical process and the meteorological conditions in the region with better understanding on the O_3 characterization.  相似文献   

9.
Carbon monoxide (CO) is primarily the result of incomplete combustion, which has important impacts on the atmospheric chemical cycle and climate. Improved quantitative characterization of long-term CO trends is important for both atmospheric modeling and the design and implementation of policies to efficiently control multiple pollutants. Due to the limitations of high time-resolution and high-quality long-term observational data, studies on long-term trends in the CO concentration in China are quite limited. In this study, the observational data of the concentration of CO in a rural site of Beijing during 2006–2018 was used to analyze the long-term trend in CO concentration in Beijing. The Theil-Sen method and the generalized additive model (GAM)-based method, were used to conduct the trend estimation analysis. We found that the concentration of CO at the Shangdianzi site showed a significant downward trend during 2006–2018, with a decline rate of 22.8 ± 5.1 ppbV per year. The declining trend in CO also showed phasic characteristics, with a fast decreasing rate during the period of 2006–2008, stable variations during the period of 2009–2013 and a continuous downward trend after 2013. The declining trend in the CO concentration in the south to west (S-W) sectors where the polluted air masses come from is more rapid than that in the sectors where the clean air masses come from. The declining trend in the CO concentration implies the improved combustion efficiency and the successful air pollution control policies in Beijing and the surrounding area.  相似文献   

10.
The monthly concentrations of NO2, NOx, SO2 and O3 measured by a passive sampler from February 2003 to January 2004 showed that the air pollution during the winter season in Kathmandu valley was higher than the summer season. The O3 level was found the highest during April, May and June due to strong radiation. The hourly concentrations of NO2, NOx, O3 and suspended particulate matter(SPM) were also measured by automatic instruments on December 2003. Temperature at the height of 60 m and 400 m at Raniban Mountain in the northwest of Kathmandu valley was measured on February 2001 in the winter season and the average potential temperature gradient was estimated from observed temperature. Wind speed was also measured at the department of hydrology, airport section, from 18 February to 6 March 2001. It was found that the stable layer and the calm condition in the atmosphere strongly affected the appearance of the maximum concentrations of NO2 and SPM in the morning, and that the unstable layer and the windy condition in the atmosphere was considerably relevant to the decrease of air pollution concentrations at daytime. The emission amounts of NOx, HCs and total suspended particle(TSP) from transport sector in 2003 were estimated from the increasing rate of vehicles on the basis of the emission amounts in 1993 to be 3751 t/a, 30570 t/a and 1317 t/a, respectively. The diurnal concentrations in 2003 calculated by the two-layers box model reproduced the characteristics of air pollution in Kathmandu valley such as the maximum value of O3 and its time, the maximum value of NO in the morning, and the decrease of NO and NO2 at daytime. The comparison with the concentrations in 1993 calculated suggested that the main cause of air pollution was the emission from transport sector.  相似文献   

11.
广州地区SO42-、NO3-、NH4+与相关气体污染特征研究   总被引:7,自引:2,他引:5       下载免费PDF全文
本文获得了2009年12月1日至2011年12月31日广州二次无机离子(SO2-4、NO-3、NH+4)及相关反应性气体(NOx/SO2/HNO2/HNO3等)的小时浓度数据,并分析了其污染特征.研究结果表明:PM2.5的浓度季节变化特征为冬秋春夏,SO2-4的浓度季节变化特征为秋冬春夏,NH+4的为冬秋春夏,NO-3则为冬春秋夏,SO2-4、NO-3和NH+4之和占PM2.5的比重大小为秋夏春冬;硫氧化率(SOR)均大于0.1,秋冬季节的值高于春夏季节,与SO2-4的浓度变化趋势一致;氮氧化率(NOR)日变化呈单峰形式,最大值出现在06时,最小值出现在14时,春冬季节的值高于夏秋季节,与NO-3的浓度变化趋势一致;广州地区NH3/NH+4除10—12月外,其月均值均大于1;在典型过程中,SO2-4、NO-3、NH+4、SOR、NOR和NH3/NH+4与能见度的变化都存在较好的对应关系,说明广州地区低能见度与二次离子(SO2-4、NO-3、NH+4)的生成有关.  相似文献   

12.
二氧化硫(SO_2)是一种有毒的大气污染物,主要经气孔进入植物体内.目前对于SO_2毒性的研究多集中在氧化损伤方面,关于SO_2对植物脯氨酸代谢的影响及相关分子机制的研究还很少.本文以谷子幼苗为材料,研究了不同浓度SO_2气体暴露对叶片气孔运动、脯氨酸代谢和抗氧化酶系统的影响.结果显示,10 mg·m~(-3) SO_2熏气对谷子幼苗的叶片形态、相对含水量、气孔开度、脯氨酸含量及抗氧化酶活性均无明显影响.30 mg·m~(-3) SO_2暴露24~72 h后,叶片出现明显的受损症状,相对含水量降低,叶面气孔开度减小;30 mg·m~(-3) SO_2熏气导致叶中脯氨酸含量显著增加,脯氨酸脱氢酶(PDH)活性明显升高.同时,长时间的SO_2胁迫可诱导SiPDH基因表达上调,而脯氨酸合成相关基因SiP5CS、SiP5CR表达受到明显抑制.此外,谷子幼苗暴露于30 mg·m~(-3) SO_2时,叶中超氧阴离子(O■)产生速率与对照相比显著提高,诱导超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性增强,从而将过氧化氢(H_2O_2)含量维持在正常水平.以上结果表明,SO_2对谷子的毒性效应具有浓度依赖性.高浓度SO_2暴露下,谷子能够通过控制气孔开放、调节脯氨酸代谢和抗氧化酶活性等过程来适应SO_2胁迫.  相似文献   

13.
本研究采用便携式温室气体分析仪连接通量箱在线监测杭州西溪湿地CH_4、CO_2通量日变化及季节变化,同时也对包括有机碳含量、湿度、孔隙度、比重、p H、Eh在内的潜在影响因子进行了研究。结果表明,通常情况下,CH_4、CO_2通量的变化分别为-0.001 9~0.035 3mg/(m~2·h)和-109.76~442.55mg/(m~2·h);CH_4、CO_2通量的变化存在明显正相关关系。CH_4通量的季节变化表现为夏季秋季春季冬季;CO_2通量的季节变化表现为夏季春季冬季秋季。土壤湿度是影响CH_4通量变化的重要因子,通常湿度越大,CH_4通量越大;在生长季维管植物有助于CH_4的氧化;西溪湿地土质差异也使CH_4、CO_2通量排放有所差异,具体表现在土壤有机碳含量相差较大,而土壤中有机碳的含量与CH_4产生潜力呈显著正相关。  相似文献   

14.
采用共沉淀法合成了TiO_2及TiO_2-Fe_2O_3载体,并对硫酸氢铵与上述载体之间的相互作用及硫酸氢铵的具体分解行为进行了研究.结果表明,催化剂载体表面含硫官能团主要以双齿硫酸盐的形式存在,含氮官能团以铵根离子的形式存在.当硫酸氢铵沉积于催化剂载体表面时,由于硫酸根离子具有较强的电负性,Ti原子及Fe原子处于电子缺失状态.对于TiO_2载体,硫酸根离子主要与Ti原子相连;而对于TiO_2-Fe_2O_3载体,Ti原子及Fe原子均为硫酸根离子主要的附着位点.采用热分析方法及原位红外对硫酸氢铵在TiO_2及TiO_2-Fe_2O_3载体表面的分解行为进行了研究,发现铁氧化物的添加显著促进了硫酸氢铵在低温区间内的分解行为;与铵根离子相比,硫酸根离子具有更高的热稳定性.催化剂稳定性测试结果表明,铁氧化物的添加显著提高了低温抗硫抗水性能,为实现低温SCR技术的工业应用提供了理论基础.  相似文献   

15.
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO2-4、NO-3、NH+4是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)冬(85.6%)秋(85.5%)春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO2-4在四季中均以(NH4)2SO4的形式存在.NO-3在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO2-4的主要生成途径,夏、冬季也伴随有非均相反应.NO-3的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   

16.
基于碳捕集的富氧燃煤烟气联合脱硫脱硝试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
富氧燃煤烟气压缩液化CO2的高压低温工况为NO氧化为易溶于水的NO2提供了十分有利的条件.基于小型高压吸收试验装置,采用配制的富氧燃煤模拟烟气,在高压常温下进行了NO、SO2、O2与H2O的吸收反应试验.根据反应前后的气液产物分析,测定了不同组分比例与不同压力下混合气体中NO与SO2的转化率.NO氧化与吸收试验表明,NO转化为HNO3的比率随压力升高而增加,在0.5 ~2 MPa之间增加很快,在2 ~3 MPa之间增速趋丁平缓,压力达3 MPa以上时,90%以上的NO均转化为稀硝酸,且初始NO浓度越高,NO的转化率越大.混合气体中同时存在5O2与NO的联合吸收试验发现,只有少量的NO转化成了NO3-,SO2向H2SO4的转化率随压力升高而增加,初始SO2浓度越大,转化率越高.分析表明,SO2与NO同时存在时SO2先行转化为SO3,NO充当了催化剂,但SO2转化为SO3的一次转化率小于35%,反应酸液产物的多次循环能使SO2的转化率达到90%以上.建议的工艺流程中需采用两座吸收反应塔顺序脱除SO2与NO并回收稀酸溶液,有望在富氧燃煤发电捕集CO2系统中降低脱硫脱硝成本,部分地弥补富氧燃烧机组发电成本的增加.  相似文献   

17.
二氧化硫胁迫下拟南芥miRNA表达谱分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以拟南芥为材料,利用高通量测序技术并结合生物信息学分析方法,检测二氧化硫(SO_2)处理后拟南芥植株的小分子RNA表达谱,筛选SO_2胁迫响应microRNAs(miRNAs)分子,研究植物miRNAs对逆境胁迫的应答机制.结果发现,30 mg·m~(-3) SO_2处理72 h后,拟南芥地上组织小分子RNA长度分布发生改变,在对照组和SO_2组中均有大量特有的小分子RNA序列,说明SO_2胁迫可诱导拟南芥小分子RNA的表达改变.SO_2胁迫诱导186个保守miRNA和16个新miRNA分子差异表达,其靶基因主要涉及转录调控、信号转导、代谢、刺激响应等生理过程.差异表达的miR160和miR393可通过生长素信号途径调控植株生长发育,参与植物对SO_2的胁迫响应.本研究揭示了植物中参与SO_2胁迫应答的miRNA种类及作用机制,进一步阐明了miRNAs在植物抗逆应答过程中的作用.  相似文献   

18.
采用电晕放电与液相络合催化协同同时去除烟气中SO2和NO,电压、水流量、乙二胺合钴浓度、pH、SO2和NO初始浓度以及气流量对同时去除SO2和NO效率的影响进行了实验研究.结果表明:NO去除率随着放电电压、水流量、乙二胺合钴浓度、pH的增加而增加,而随SO2和NO初始浓度、烟气流量的增大而减小;SO2去除率也随放电电压,水流量的增加而增加,随烟气流量的增加而下降,但溶液pH,SO2和NO初始浓度和乙二胺合钴浓度对其影响很小.溶液中加入Mn2+和尿素能分别增强SO2和NO的去除效果.最佳条件为:电压25 kV、水流量80 L·h-1,乙二胺合钴浓度0.02 mol·L-1,烟气流量1.0 m3·h-1、尿素浓度0.02 mol·L-1,Mn2+浓度为0.02 mol·L-1时,NO和SO2去除率分别可达68%和94%,对应能量消耗分别为22.2 g·k Wh-1和75.2 g·k Wh-1.  相似文献   

19.
李蒋  王雁  张秀芳  赵旭 《环境科学》2018,39(8):3713-3718
采用静电纺丝法制备了Co_3O_4/BiVO_4复合薄膜电极,并以之为光阳极,在过一硫酸盐(PMS)辅助作用下开展了光电催化降解双酚A研究.结果表明,PMS在可见光下可显著强化Co_3O_4/BiVO_4复合阳极光电催化降解双酚A,在0.25 V外加偏压以及可见光照射下,当加入2 mmol·L-1PMS时,双酚A在2 h内的降解效率为96%.降解动力学常数为0.471 4 min-1.系统研究了PMS初始浓度、外加偏压对双酚A降解性能的影响.结果发现,双酚A在较低的PMS投加量和较低的外加偏压(0.25 V)下即可有效降解.采用电子自旋共振波谱仪鉴定体系的主要活性自由基为SO·-4和·OH.并进一步通过淬灭实验结果证明空穴、SO·-4和·OH起主要氧化作用.光电反应后的体系中未检测到金属离子溶出,可避免二次污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号