首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微生物异化Fe(Ⅲ)还原是指以Fe(Ⅲ)为末端电子受体在无氧条件下氧化有机物的产能过程,而铁元素是地壳中丰度最高的元素之一,因此,异化Fe(Ⅲ)还原在生物地球化学循环中起着重要的作用。文章围绕异化Fe(Ⅲ)还原机制,综述了国内外有关异化Fe(Ⅲ)还原在有机污染物(尤其是难降解有机污染物)、营养物质(N,P)等环境污染治理中的研究现状及其发展趋势,并对其进行了评述和展望,以期为特定污染物在环境污染治理中的实际应用提供参考依据。  相似文献   

2.
不同Fe(Ⅲ)对活性污泥异化铁还原及除磷影响研究   总被引:1,自引:0,他引:1  
以SBBR反应器活性污泥作为铁还原菌菌种来源,采用兼性厌氧/严格厌氧恒温培养试验,投加不同Fe(Ⅲ)考察各条件下的异化铁还原能力同时比较对磷的去除效果.结果表明:2种条件下Fe(Ⅲ)还原能力具有较好的一致性,依次为:Fe(OH)3>氧化铁皮>青矿>红矿,其中严格厌氧条件下较好.同时,除磷效果与其呈正相关,富集培养至7d,Fe(OH)3及氧化铁皮体系出水磷浓度均达到2mg/L以下,之后继续降低,最终达到0.5mg/L以下.结合异化铁还原除磷机理,可以证明,不同Fe(Ⅲ)表面吸附作用对TP的去除贡献较小,其主要作用为铁还原菌驱动下的化学沉淀去除.  相似文献   

3.
异化铁还原对土壤中重金属形态转化及其有效性影响   总被引:9,自引:2,他引:7  
司友斌  王娟 《环境科学》2015,36(9):3533-3542
铁的微生物还原是以Fe(Ⅲ)为末端电子受体在厌氧条件下氧化有机物的产能过程,在生物地球化学循环中起着重要的作用.铁呼吸被认为是地球上最古老的微生物代谢形式,与水体、土壤及沉积物中物质循环息息相关.铁的微生物还原对土壤中重金属形态转化有显著影响,对修复重金属及放射性核素污染的场地有着重要意义.本文综合评述了近年来铁微生物还原研究进展,从生态安全和可持续发展角度,探讨了异化铁还原对重金属的形态改变及重金属污染土壤修复的潜在价值,并对其应用前景进行客观分析.异化铁还原对重金属形态转化的影响机制,可初步归纳为异化铁还原对重金属的氧化还原作用、对重金属的甲基化作用、对重金属的固定作用,其作用机制包含生物过程和化学作用的相互穿插,值得进一步深入研究.  相似文献   

4.
河口潮汐湿地沉积物电子受体和盐度的变化将对间隙水、沉积物的地球化学参数及有机碳厌氧矿化途径产生重要影响.本研究于闽江河口塔礁洲淡水野慈姑(Sagittaria trifolia L.)湿地原位施加人造海水及Fe(III)溶液,模拟研究了盐水入侵及径流Fe(III)浓度增强对河口潮汐湿地沉积物、间隙水的地球化学参数(溶解性CH4、DOC、DOC∶DON、Fe2+和ΔSO2-4)和沉积物各形态固相铁(非硫Fe(II)、无定形Fe(III)、晶质Fe(III)、Fe S和Fe S2)含量的影响.结果表明,模拟盐水入侵及径流Fe(III)浓度增强均可降低间隙水溶解性CH4和DOC浓度,径流Fe(III)浓度增强增加了非硫Fe(II)和晶质Fe(III)含量,盐水入侵可减小间隙水ΔSO2-4含量.间隙水ΔSO2-4与DOC、DOC∶DON、溶解性CH4及Fe2+浓度相关.模拟盐水入侵及径流Fe(III)浓度增强可分别促进硫酸盐异化还原和铁异化还原速率,同时减小间隙水CH4浓度,改变河口潮汐湿地土壤有机质厌氧矿化优势途径.  相似文献   

5.
段勋  罗敏  黄佳芳  刘育秀  胡颖 《环境科学学报》2017,37(10):3780-3791
滨海潮滩沉积物铁异化还原过程对有机质代谢及生源要素(C、N、P、S、O等)生物地球化学循环具有深远的影响.本文以闽江河口鳝鱼滩潮滩湿地为研究对象,对高、中、低潮滩0~80 cm深度内与铁异化还原相关的不同形态铁的含量和空间分布进行分析.结果表明,无定形Fe(Ⅲ)((39.3±5.3)μmol·g~(-1))和晶质Fe(Ⅲ)((84.2±10.7)μmol·g~(-1))主要分布在高潮滩,并沿着向海方向减少;铁的硫化物FeS((15.3±2.8)μmol·g~(-1))和Fe S2((6.0±1.1)μmol·g~(-1))集中分布在中、低潮滩;非硫Fe(II)((111.7±12.8)μmol·g~(-1))富集在整个潮滩剖面上,且含量随着深度增加而增加.孔隙水Fe~(2+)((3.7±0.7)mmol·L~(-1))与Fe S2、SO_4~(2-)和pH相关,说明Fe~(2+)可能与黄铁矿的水解有关.不同形态铁在高、中、低潮滩表现出显著的空间分布异质性.高潮滩铁异化还原的强度大于硫酸盐异化还原,但沿着向海方向,硫酸盐异化还原的潜势逐渐增加.本研究证明了潮汐水文和高程对潮滩湿地铁的迁移和转化具有重要的意义.  相似文献   

6.
以投放海绵铁-AT-PVF复合填料的SBBR反应器活性污泥作为铁还原菌菌种来源,采用厌氧恒温培养试验,考察了不同Fe(Ⅲ)(氧化铁皮、青矿和红矿)对活性污泥异化铁还原能力及脱氮效果的影响,并对其作用机制进行了初步分析.结果表明:初始基质无NO-2的前提下,各体系Fe(Ⅲ)还原能力与脱氮效果表现出较好的关联性,同时发生NO-2-N和NO-3-N的积累现象.其中,氧化铁皮体系的脱氮效果最好,对NH+4-N、TN的累计去除量分别为75.04和80.99 mg·L-1,容积TN去除率为3.88 mg·L-1·d-1(以N计).更进一步的研究发现,不同培养时间内NH+4氧化量与Fe(Ⅱ)产生量之间符合幂指数关系,R2为0.9521.结合标准吉布斯自由能变化,厌氧环境下IRB参与活性污泥中N素循环的交互作用机制可分为3个子过程,即Fe(Ⅲ)的微生物还原解离耦合NH+4的氧化过程、厌氧氨氧化过程和NO-3-依赖型Fe(Ⅱ)氧化过程,其中,以IRB为主的微生物氧化还原过程对活性污泥中N循环起到了至关重要的作用.  相似文献   

7.
淹水厌氧条件下腐殖酸对红壤中铁异化还原过程的影响   总被引:7,自引:1,他引:6  
采用室内培养实验,观测淹水厌氧条件下分别添加及共同添加葡萄糖和不同制备来源的腐殖酸,对红壤中铁的异化还原作用的影响.结果表明,红壤单独培养条件下,Fe(Ⅱ)浓度培养前后没有发生变化.添加葡萄糖促进了铁的异化还原,培养至12 d其Fe(Ⅱ)浓度为培养前的25倍.腐殖酸不能作为电子供体促进铁的异化还原,单独添加时红壤中Fe(Ⅱ)浓度没有发生变化,而同时添加葡萄糖情况下,培养前期促进而后期减弱铁的异化还原,其Fe(Ⅱ)浓度增幅仅为单独添加葡萄糖处理的35%.腐殖酸的浓度对红壤中铁的异化还原作用有影响,浓度为2.00 g/kg时培养前期促进而后期减弱铁的异化还原,低浓度时(0.20和0.02 g/kg)影响很小.不同制备来源的腐殖酸对红壤中铁异化还原过程的影响不同.培养前期,从山西大同风化煤(HAs)、河南巩县褐煤(HAh)和云南昆明滇池底泥(HAk)中提取的腐殖酸都促进了红壤中铁的异化还原;培养后期,HAk依然发挥促进作用,其Fe(Ⅱ)浓度始终高于G处理,而添加HAs和HAh的处理培养至7 d Fe(Ⅱ)仅为单独添加葡萄糖处理的14%和25%,减弱了铁的异化还原.  相似文献   

8.
基于典型的希瓦氏金属还原菌(Shewanella decolorationis S12)和石英砂负载铁砷(As-IOCS)的相互作用,探讨了不同来源及组分溶解有机质和生物/非生物条件下对上述作用过程的影响.结果表明,不同类型及组分溶解有机质(DOM)均能使石英砂上负载的铁砷微生物还原解离/解吸程度得到一定程度的加强.而非生物反应体系中,只有含氧化还原敏感官能团结构的蒽醌类物质(0.1 mmol·L-1AQS)对铁砷的解离/解吸作用产生明显影响.在0.1 mmol·L-AQS和有机络合物(2 mmol·L-1 EDTA)的影响下,使得石英砂上负载铁的微生物异化还原程度加强,导致As(Ⅴ)从石英砂负载铁上的解吸程度也随之得到加强;在未加菌体系中,AQS和EDTA和不同组分的DOM类似,对As(Ⅴ)从IOCS上解吸程度影响微弱.对于As(Ⅲ)来说,只有在AQS的影响下,其含量得到显著增加,这可能是作为氧化还原中介体的AQS,在厌氧的生物/非生物条件下,能促进电子在As不同形态之间的转移,使得高价态As(Ⅴ)向还原态As(Ⅲ)的还原转变更易进行.当S12菌液接种含量增加时,在污泥不同组分DOM的影响下,As(Ⅴ)的解吸程度在反应300h前得到明显加强,而As(Ⅲ)的含量在整个反应期间,均快速上升,表明菌液含量高的体系,微生物铁异化还原过程得以持续进行,同时也促进了As(Ⅴ)向As(Ⅲ)的还原转变.  相似文献   

9.
以SBBR反应器活性污泥作为铁还原菌菌种来源,采用兼性厌氧/严格厌氧恒温培养试验,投加不同Fe(III)考察各条件下的异化铁还原能力,同时比较对磷的去除效果.结果表明:2种条件下Fe(III)还原能力具有较好的一致性,依次为:Fe(OH)3>氧化铁皮>青矿>红矿,其中严格厌氧条件下较好.同时,除磷效果与其呈正相关,富集培养至7d, Fe(OH)3及氧化铁皮体系出水磷浓度均达到2mg/L以下,之后继续降低,最终达到0.5mg/L以下.结合异化铁还原除磷机理,可以证明,不同Fe(III)表面吸附作用对TP的去除贡献较小,其主要作用为铁还原菌驱动下的化学沉淀去除.  相似文献   

10.
采用水稻秸秆在300,400和500℃热解温度下制备生物炭(BC),并从中提取生物炭水溶组分(DBC),结合微生物还原实验和傅里叶转换红外光谱仪(FTIR)、X射线衍射晶体衍射(XRD)、电子顺磁(EPR)等表征手段考察BC和DBC对Geobacter sulphurreducens PCA还原水铁矿的影响和作用机制.结果表明,400℃热解BC可使微生物异化铁还原的速率增加12倍,还原率最高,这是由于其含有最多的醌基、羧基基团,可以作为电子穿梭体促进电子转移.BC不能作为电子供体直接向微生物或水铁矿提供电子.DBC使水铁矿的长期微生物异化铁还原程度和初始还原速率分别增加了10倍和2倍以上.500℃热解DBC可以充当电子供体或者电子穿梭体,促进水铁矿的微生物还原,但是不能直接化学还原水铁矿.  相似文献   

11.
在实验室模拟条件下,研究了Shewanella oneidensis MR-1作用下Fe(III)还原和As(III)氧化动力学及其影响因素.结果表明,Fe(III)被还原为Fe(II)的同时伴随着As(III)氧化为As(V);S.oneidensis MR-1在含低浓度As(III)培养基上生长良好,在高浓度培养基上生长被抑制;As(III)通过制约菌体的生长与活性来抑制Fe(III)异化还原.同样,适量浓度的Fe(III)含量对As(III)氧化转化有很强的促进作用,但是过高浓度的Fe(III)浓度使得溶液中产生过多的Fe(II),从而对As(III)氧化转化有一定程度的抑制作用.此外,弱碱环境更有利于As(III)氧化转化.  相似文献   

12.
王聪  王舒  李楠 《环境科学学报》2019,39(10):3325-3332
蓝铁石结晶法磷回收是近年来国内外磷回收领域研究的热点.如何获得高产率的结晶产物,对于蓝铁石结晶法磷回收技术的广泛应用至关重要.本研究将不同投加量、不同粒径的石墨加入到混菌铁磷复合体系中培养22 d,探讨石墨对微生物异化铁还原合成蓝铁石过程的影响,以期为碳材料强化蓝铁石结晶法磷回收提供科学依据.结果表明:当石墨投加量为1 g·L~(-1)、粒径为10μm时,Fe(Ⅱ)含量在第10 d和第14 d时分别比对照组高12%和10%,对蓝铁石合成的强化作用最为明显.因此,1 g·L~(-1)、10μm的石墨投加条件为本实验中石墨强化微生物异化铁还原合成蓝铁石的最佳磷回收条件.实验末期测定了对照组和最佳石墨组体系中微生物蛋白含量,发现二者之间并无明显差异,表明石墨对微生物量的影响不大.此外,分析微生物群落结构变化发现,与原始污水水样相比,对照组和石墨组的变形菌门比例明显增加,且石墨组的增幅更大,表明石墨更利于变形菌的富集.由此推测,石墨对微生物异化铁还原合成蓝铁石的促进可能源于体系中石墨对变形菌门细菌的强化富集作用.  相似文献   

13.
在实验室模拟条件下,研究了Shewanella oneidensis MR-1作用下Fe(III)还原和As(III)氧化动力学及其影响因素.结果表明,Fe(III)被还原为Fe(II)的同时伴随着As(III)氧化为As(V);S. oneidensis MR-1 在含低浓度As(III)培养基上生长良好,在高浓度培养基上生长被抑制;As(III)通过制约菌体的生长与活性来抑制Fe(III)异化还原.同样,适量浓度的Fe(III)含量对As(III)氧化转化有很强的促进作用,但是过高浓度的Fe(III)浓度使得溶液中产生过多的Fe(II),从而对As(III)氧化转化有一定程度的抑制作用.此外,弱碱环境更有利于As(III)氧化转化.  相似文献   

14.
生物炭的施用对土壤铁(氢)氧化物还原、砷(As)的形态转化有重要作用,极大地影响了As的环境行为.本文研究了生物炭/AQDS (蒽醌-2,6-二磺酸盐)对含As (Ⅲ)水铁矿化学还原和异化还原的影响,探索了由此产生的非生物和生物过程中Fe和As的形态转化及次生矿物的形成.结果表明,生物炭和AQDS的添加可以促进水铁矿的化学还原和As (Ⅲ)的化学氧化,AQDS促进水铁矿化学还原和As释放的能力强,生物炭促进As形态转化的能力强;生物组在添加Shewanella oneidensis MR-1后发现,生物炭和AQDS的添加可以促进Fe (Ⅱ)的生成,AQDS的添加促进Fe (Ⅱ)的生成、As形态转化和释放的能力要高于生物炭.EEM结果表明,生物炭产生的DOM可以与溶液中的物质发生氧化还原作用从而被消耗.循环伏安曲线在0.25 V处观察到一个小而宽的阳极峰(B),可能对应了As (Ⅲ)氧化为As (V).XRD结果显示AQDS处理的非生物组和生物组出现了蓝铁矿,表明AQDS可以促进次生矿物的生成.EDX-SEM结果表明,新矿物的生成有利于As的固定(BCF:0.73%相似文献   

15.
一些发酵型异化铁还原细菌同时具有异化铁还原与产氢的能力,该类细菌在环境污染修复的同时能够解决能源问题,具有广阔应用前景。本文以海洋沉积物中异化铁还原细菌Enterococcus sp. ZQ21为研究对象,设置不同形态Fe(Ⅲ),分析菌株ZQ21异化铁还原与产氢性质。结果表明,当氢氧化铁和柠檬酸铁为电子受体时,菌株ZQ21以柠檬酸铁为电子受体时Fe(Ⅲ)还原效率较高,其酶活性分别为3.66 U和4.40 U。同时,菌株ZQ21在异化铁还原培养体系中具有产氢能力,以柠檬酸铁和氢氧化铁为电子受体进行厌氧发酵培养时,体系累积产氢量分别为(1395.30 ± 4.79)mL/L和(174.30 ± 3.23)mL/L,均显著高于对照组[(23.20 ± 2.09) mL/L]。通过液相发酵产物分析,在柠檬酸铁和氢氧化铁不同形态Fe(Ⅲ)培养条件下,菌株ZQ21分别表现出乙醇型发酵和丁酸型发酵产氢代谢类型。菌株Enterococcus sp. ZQ21具有异化铁还原和产氢能力,进一步拓宽发酵型异化铁还原细菌种质资源。  相似文献   

16.
Cr(VI)是一种毒性极强的重金属,利用微生物还原Cr(VI)为Cr(III)是解决Cr(VI)污染的一条有效途径。菌株Enterobacter sp. L6是一株分离自海洋沉积物中的异化铁还原细菌。接种时细胞密度A600为(0.25±0.03),培养12 h,A600达到(1.04±0.05),累积产生Fe(II)浓度为(0.80±0.03)mmol/L;随着培养时间的延长,细胞密度A600和累积产生Fe(II)浓度开始下降;培养36 h时,细胞密度A600为(0.81±0.04),累积Fe(II)浓度(0.63±0.01)mmol/L。在厌氧培养过程中,菌株L6细胞生长与异化还原Fe(III)性质存在明显的偶联关系。利用菌株L6的异化铁还原性质还原Cr(VI)的实验结果表明,在Cr(VI)浓度0~24 mg/L范围内,异化铁还原细菌L6都能进行细胞生长并还原Cr(VI)。Cr(VI)浓度为4、8和12 mg/L时,菌株L6对Cr(VI)还原率可达到100%,当Cr(VI)浓度为16 mg/L时,Cr(VI)还原率是参比[未添加Fe(III)]的2.11倍。Cr(VI)浓度为20、24 mg/L时,仍能够还原Cr(VI)。以Fe(III)为电子受体的异化铁还原细菌能明显提高Cr(VI)还原率,这为利用微生物修复Cr(VI)污染提供实验数据支持。  相似文献   

17.
湿地土壤和沉积物中的Fe(Ⅲ)还原过程是地球化学循环中重要的一部分,目前有关鄱阳湖湿地DOM的化学组成及其与Fe(Ⅲ)还原作用的构效关系尚不明确.为此,以鄱阳湖湿地沉积物中分离筛选出的铁还原菌作为模式菌,Fe(Ⅱ)的生成量作为考察指标进行Logistic方程拟合分析,并采用紫外-可见光谱、三维荧光光谱及XRD光谱,研究了不同浓度和来源的DOM对水铁矿的还原作用,并对"DOM-铁还原菌-水铁矿"体系中电子转移机制进行了探讨.结果表明,DOM对水铁矿的还原具有促进作用,当苔草DOM浓度为30 mg·L-1时,可使Fe(Ⅱ)含量增加39.7%;DOM对Fe(Ⅲ)还原的促进作用与水铁矿含量相关,在水铁矿添加量为0~1000 mg·L-1时,Fe(Ⅱ)含量显著增加,其中1000 mg·L-1下的Fe(Ⅱ)生成量是50 mg·L-1的13.2倍.不同浓度DOM对Fe(Ⅲ)还原的促进作用不同,表现为苔草DOM:150 mg·L-1>100 mg·L-1≈50 mg·L-1≈30 mg·L-1>20 mg·L-1>0 mg·L-1,沉积物和根际土DOM对Fe(Ⅲ)还原的促进作用均随着浓度(20、30、50 mg·L-1)的增加而略有增大.不同来源(苔草、沉积物、根际土) DOM对水铁矿还原的促进作用无显著性差异(p<0.05).DOM对水铁矿还原的促进作用主要表现为低分子量组分(色氨酸、酪氨酸等)为铁还原菌提供营养物质和大分子量组分(腐殖酸、富里酸)作为电子穿梭物质.这些结果反映了DOM在电子转移反应中的重要性,为DOM的环境属性提出了一个新见解.  相似文献   

18.
司友斌  孙林  王卉 《环境科学》2015,36(6):2252-2258
在实验室模拟条件下,研究了铁还原菌奥奈达希瓦氏菌Shewanella oneidensis MR-1对针铁矿的异化还原及其对汞生物甲基化的影响.结果表明,S.oneidensis MR-1能溶解针铁矿,并能将溶解出的Fe3+还原成Fe2+;S.oneidensis MR-1也是一种汞甲基化细菌,能够将无机汞转化成甲基汞.铁的溶解还原作用随着初始针铁矿剂量的大幅增加而减弱,针铁矿的异化还原在一定程度内促进汞的生物甲基化.弱酸性条件比中碱性和强酸条件有利于汞的甲基化;腐殖酸在低浓度促进汞甲基化,浓度过高则会抑制汞的甲基化.  相似文献   

19.
微生物异化还原铁氧化物体系对硝基苯的降解作用   总被引:1,自引:0,他引:1       下载免费PDF全文
对地下环境中铁氧化物的生物异化还原作用及其降解硝基苯的特性和效果进行了实验研究.结果表明,铁还原菌对硝基苯具有一定的降解能力,100h后硝基苯降解率>68.5%.微生物异化还原铁氧化物过程对硝基苯具有较好的降解作用,当针铁矿浓度为0.3mg/L时,协同降解效果最好,硝基苯降解率为78.5%.微生物的生长与铁氧化物的还原及硝基苯的降解之间具有明显的相关性.  相似文献   

20.
刘洪艳  覃海华  王珊 《海洋环境科学》2019,38(4):508-512, 520
取渤海沉积物进行厌氧培养,富集异化铁还原细菌。采用三层平板法筛选出一株高效异化铁还原细菌ZQ21。经鉴定,该菌株为Enterococcus sp.ZQ21(GenBank号MF192756)。设置不同电子供体、电子受体和电子传递体浓度,分析菌株ZQ21异化还原Fe(Ⅲ)性质。结果表明,在乙二胺四乙酸二钠、柠檬酸钠、葡萄糖、丙酮酸钠、乙酸钠和甲酸钠为电子供体时,菌株ZQ21利用丙酮酸钠还原Fe(Ⅲ)效率最高,累积Fe(Ⅱ)浓度达到113.14 ±3.46 mg/L。菌株ZQ21以柠檬酸铁和氢氧化铁为电子受体时,累积Fe(Ⅱ)浓度分别为91.75 ±1.45 mg/L和58.39 ±4.34 mg/L,Fe(Ⅲ)还原效率存在显著差异。在电子受体为氢氧化铁时,添加不同浓度电子传递体蒽醌-2-磺酸钠(AQS),旨在提高菌株ZQ21的Fe(Ⅲ)还原效率。当AQS浓度为1.50 mmol/L时,菌株ZQ21还原Fe(Ⅲ)效率最高,累积Fe(Ⅱ)浓度达到80.28 ±3.95 mg/L,比对照组提高27%。铁还原细菌ZQ21能够有效利用可溶性以及不溶性电子受体进行异化铁还原,可进一步应用于海洋污染环境中微生物介导的异化Fe(Ⅲ)还原过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号