首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

2.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

3.
采用UASB反应器在改变NO2--N/NH4+-N比条件下,考察厌氧氨氧化系统对NH4+-N的超量去除特征、相关酶的催化活性以及污泥菌群结构.结果表明,随着进水NO2--N浓度降低,反应器对NH4+-N的去除量相比理论较大,在停供NO2--N情况下,反应器内NH4+-N去除可达55 mg/L.反应器内NH4+-N的去除并不是是来自进水中SO42-和Fe3+/EDTA络合物,而是存在NH4+-N的好氧硝化.过氧化氢酶测定联合分子生物学技术分析显示,好氧硝化的所需氧量分别来自进水和过氧化氢酶产氧.反应器底部污泥层的氨氧化菌(AOB)、厌氧氨氧化菌(AnAOB)活性优于上部污泥层,相反,上部污泥层的异养反硝化菌(HDB)活性优于底部污泥层,二者协同将NH4+-N转化为N2.  相似文献   

4.
微藻培养耦合污水处理是一项极具潜力的绿色生物技术,具有污染物减排和资源化的双重效应.为明确不同微藻固定化后对NH4+-N去除的差异及优势,以斜生栅藻和普通小球藻为研究对象,以自由生长为对照,通过5 d的批次培养试验对比分析了2种固定化微藻不同营养模式下对NH4+-N污水的适应性及其生长特性.结果表明:①对比自由生长,固定化生长可有效提升斜生栅藻在自养和异养模式下的NH4+-N去除能力,2种模式下最大去除率分别为98%和53%,而在混养模式下,最大去除率则从100%降至86%.②固定化生长对普通小球藻NH4+-N去除率的提升较弱,仅在自养模式下发挥正效应,最大去除率可升至37%,在混养模式下,其自由生长优势强于固定化生长,当C/N为10时,NH4+-N第4天即可完全去除.③固定化生长并未改变混养模式下2种微藻生长对ρ(CODCr)的依赖性,而该效应在异养模式下并不明显.④除自养模式外,固定化生长均略低于自由生长,并且普通小球藻的生长速率也显著高于斜生栅藻.研究显示,斜生栅藻单个细胞对NH4+-N的去除能力优于普通小球藻单个细胞,斜生栅藻污水培养的适应性更强,并且固定化自养模式最佳,而普通小球藻固定化优势微弱.   相似文献   

5.
金翠萍  向斯  郭溪  程凯 《中国环境科学》2019,39(4):1478-1484
以一株异养氨氧化菌Delftia tsuruhatensis HT01为研究对象,比较了以十二烷基硫酸钠(SDS)、甘蔗糖蜜、丁二酸钠、乙酸钠、蔗糖、葡萄糖、果糖或柠檬酸钠等为唯一碳源时的生长情况及对TOC、NH4+-N、TN的去除率,并通过两轮中试测试了该菌对皮革污水的处理效果.结果表明:HT01在异养条件下能够生成NO2--N,并可以在利用SDS (去除率为34%)的同时去除NH4+-N和TN (去除率分别为74%和14%);丁二酸钠和乙酸钠分别有利于实现最快的生长速度和最高的TOC去除率(71%),而果糖则有利于实现最高的NH4+-N和TN去除率(分别为98%和29%).HT01能够在皮革污水中生长,第2轮中试对COD,NH4+-N和TN的去除率分别达到38%,49%和22%.  相似文献   

6.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

7.
为探究磁性载体移动床生物膜反应器(MBBR)系统对不同浓度纳米ZnO胁迫的响应,构建2组MBBR开展纳米ZnO胁迫实验,通过对比普通与磁性载体MBBR中COD、NH4+-N去除性能、生物膜形貌、微生物群落及功能基因,分析磁性载体对纳米ZnO胁迫下MBBR中污染物去除性能及微生物的影响.结果表明:低浓度(5,10mg/L)纳米ZnO对COD、NH4+-N去除无显著影响;高浓度(30,50mg/L)纳米ZnO胁迫后,磁性载体MBBR的NH4+-N去除率分别降低10.57%和12.91%,低于普通载体的14.48%和16.94%.相比于NH4+-N,纳米ZnO胁迫对COD去除影响较小.此外,高浓度(30,50mg/L)纳米ZnO胁迫导致更多纳米ZnO颗粒团聚并吸附于磁性载体生物膜表面,继而改变了生物膜群落结构.在10mg/L的纳米ZnO胁迫下,磁性与普通载体生物膜中微单胞菌属(Micropruina)的相对丰度均有所提...  相似文献   

8.
为探究生物膜处理系统对纳米ZnO的耐受性能,构建序批式生物膜反应器(SBBR)开展纳米ZnO对生物膜的胁迫试验.计算纳米ZnO在生物膜中的累积量,研究其对有机物、氮、磷的去除性能影响,判定SBBR对纳米ZnO的耐受阈值.通过测定生物量、微生物活性及群落结构变化,分析微生物群落对纳米ZnO的响应.结果表明:低浓度(1~10mg/L)纳米ZnO对COD、NH4+-N、溶解性磷(SOP)去除无显著影响,但5mg/L纳米ZnO对微生物代谢速率和生物活性产生促进作用.纳米ZnO浓度逐增至50mg/L,对生物量、微生物活性抑制作用增强,COD、NH4+-N、SOP去除率分别下降26.45%、57.83%和43.50%.纳米ZnO的胁迫对SBBR中COD去除性能影响最小,对NH4+-N影响较大.COD所指示SBBR的纳米ZnO耐受阈值为911.49mg,而NH4+-N、SOP所指示的耐受阈值为579.83mg.纳米ZnO的胁迫降低了系统中微生物群落的多样性,改变了群落结构组成,Proteobacteria和Chlorofiexi相对丰度由21.09%和7.03%分别降至8.00%和2.60%,致使NH4+-N去除受到显著抑制;Patescibacteria丰度由9.33%突增至56.64%,为有机物的去除起到至关重要的作用.污染物去除性能及微生物活性表明,SBBR生物膜系统对纳米ZnO的耐受性强于活性污泥法.  相似文献   

9.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

10.
郑照明  李军  马静  杜佳  赵白航 《中国环境科学》2016,36(10):2957-2963
通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响.SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N,NO2--N,NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L.SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大.M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.  相似文献   

11.
采用ASBR反应器,通过改变进水COD/NH_4~+-N值,研究了COD/COD/NH_4~+-N对厌氧氨氧化与反硝化耦合反应的影响.结果表明:在COD为300mg/L,NO2--N为145mg/L时,COD/COD/NH_4~+-N是影响厌氧氨氧化对耦合反应脱氮贡献及COD/NH_4~+-N去除率的主要因素,但不会对NO2--N去除率产生影响.当COD/COD/NH_4~+-N值在1~3.25时,厌氧氨氧化对耦合反应的脱氮贡献率基本稳定在73.03%;当COD/COD/NH_4~+-N值在3.75时,厌氧氨氧化对耦合反应脱氮的贡献率开始由71.76%下降至约55%;当COD/COD/NH_4~+-N值在4.25~5.25时,厌氧氨氧化与反硝化的脱氮贡献率基本相等;当COD/COD/NH_4~+-N值在6.5~12.5时,反硝化的脱氮贡献率随着COD/COD/NH_4~+-N值的增大由51.69%增大到79.62%.耦合反应器中活性污泥的颗粒化程度不断增强,颗粒污泥的粒径主要分布在0.6~1.5mm范围内,污泥沉降性能良好.  相似文献   

12.
以催化氧化除氨氮/锰失活滤料为研究对象,考察了3种不同恢复方式(自然恢复,投加碱度,再次挂膜)对滤料催化氧化氨氮、锰效能的影响.结果表明,自然恢复(1#)滤柱,投加碱度(2#)滤柱,再次挂膜(3#)滤柱分别于4,2,3d后氨氮去除率达到90%以上;逐渐提高氨氮浓度,3#再次挂膜滤柱出水氨氮浓度波动最大,1#自然恢复滤柱恢复期间出水亚硝氮积累时间最长且峰值最高.3根滤柱催化氧化去除锰活性恢复速度均较快.1#自然恢复滤柱和2#碱度恢复滤柱均能在2d内将锰完全去除.3#挂膜滤柱是在停止投加高锰酸钾后5d内实现将进水锰完全去除.氨氮和锰的相互影响实验结果表明,3根滤柱中投加碱度(2#)滤柱表现最优.尽管氨氮抑制锰的去除,但是投加碱度滤柱随着进水氨氮浓度的升高出水锰浓度始终低于0.1mg/L;锰对氨氮的去除影响不显著.XRD分析结果表明,受其表面负载新生成氧化膜的影响,高锰酸钾重新挂膜滤柱的滤料样品的结晶度较差.综合考虑氨氮和锰的活性恢复效率以及挂膜过程中药品的投加,提出采用自然恢复方式最适.  相似文献   

13.
为进一步充分利用原水中碳源,实现生活污水与富含硝酸盐的工业废水同步脱氮,采用2个SBR和1个UASB串联,处理低C/N生活污水和硝酸盐废水,分别启动内源反硝化反应器(ED-SBR)、半短程硝化反应器(PN-SBR)和厌氧氨氧化反应器(AMX-UASB),考察各反应器处理性能,并探讨生活污水与硝酸盐废水同步脱氮的可行性....  相似文献   

14.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号