首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
水稻秸秆生物炭对磺胺类抗生素的吸附研究   总被引:2,自引:0,他引:2  
研究了3种热解温度分别为300℃(S300)、450℃(S450)、600℃(S600)的水稻秸秆生物炭对两种磺胺类抗生素的吸附性能及机制,同时考察了溶液p H值及离子强度对吸附的影响。结果表明,生物炭对磺胺二甲基嘧啶(SM_2)和磺胺甲恶唑(SMX)的吸附均符合准二级动力学方程;等温吸附曲线用Langmuir方程拟合优于Freundlich方程,3种生物炭的最大吸附量随热解温度的升高而升高,且对SM_2的吸附能力优于SMX,600℃热解的秸秆炭对SM_2和SMX的最大吸附量分别可达到2 857.1 mg/kg和1 724.1 mg/kg。溶液p H显著影响吸附,SM2和SMX的吸附以中性形态为主,p H在3~11的范围内,SM_2和SMX的最佳p H分别为5和3。生物炭对2种抗生素的吸附能力随离子强度的升高而轻微下降。红外光谱分析表明,氢键结合、π-π共轭是秸秆生物炭吸附2种磺胺抗生素的主要机理。  相似文献   

2.
余剑  丁恒  张智霖  李燕  丁磊 《中国环境科学》2021,41(12):5688-5700
以菱角壳为原料,乙酸钾为活化剂,通过活化碳化一步法制备了改性生物炭(MBC),对其表面形貌、孔径分布、官能团等表面性能进行了表征,并研究了其对水中盐酸土霉素(OTC)的吸附去除行为.相比于热解生物炭(BC),MBC有更高的比表面积(1147.80m2/g)、更丰富的孔径结构,更多的含氧官能团和更强的亲水性.溶液pH值在3~8时,MBC对OTC保持较高的吸附量(165mg/g).拟二级动力学模型和Langmuir模型可以很好地描述MBC对OTC的吸附行为.热力学分析显示MBC对OTC的吸附是一个自发吸热过程.除氢键作用、π-π键堆积作用和阳离子-π键作用以外,孔填充是MBC吸附去除OTC的主要作用机理.0.5mol/L氢氧化钠溶液可有效再生吸附饱和的MBC.因此,MBC作为一种吸附剂去除水和废水中的土霉素具有较好的潜能.  相似文献   

3.
由抗生素滥用引起的药物污染对人类健康和生态系统构成潜在威胁。吸附法是去除水环境中有机污染物的最有效方法之一。生物炭作为一种廉价高效的吸附材料,改性可使其吸附性能显著提升,改性生物炭对抗生素的吸附特性及机理被广泛研究和应用。在对生物炭制备及其改性方法进行回顾的基础上,系统论述了改性生物炭对典型抗生素药物的吸附性能及机制等方面的研究进展,并对生物炭的再生及其经济性进行分析,以期为新型高效生物炭的吸附机制和材料研发提供借鉴。  相似文献   

4.
四环素类抗生素污染治理是环境研究热点问题之一,生物炭吸附是高效去除有机污染物的重要方法.以玉米秸秆为原料制备热解生物炭(BC),通过氢氧化钾改性获得KBC,选择具有最佳吸附性能的KBC在400~600℃二次热解活化,最终制得改性玉米秸秆生物炭AKBC400、 AKBC500和AKBC600,并对其结构和表面性质进行表征.通过批处理实验,以BC400为对照,考察了3种AKBC对溶液中盐酸土霉素(OTC)的吸附动力学和吸附热力学特征.与BC400相比,AKBC比表面积增加23.0~37.6倍,孔隙结构显著改善,芳香性增强,吸附性能显著提高.准二级动力学模型可以更好地拟合AKBC对OTC的吸附过程,AKBC500对OTC的吸附速率常数和吸附量均高于AKBC400和AKBC600.颗粒内扩散和膜扩散均是AKBC吸附OTC的控速步骤.Langmuir、Freundlich和Temkin模型均可较好地拟合吸附等温线.AKBC对OTC的吸附均为自发、吸热和熵增加过程,吸附过程同时存在物理吸附和化学吸附作用.AKBC对OTC吸附机制包括孔填充、氢键、π—π共轭、阳离子—π键和强静电作用.AKBC具有良...  相似文献   

5.
改性生物炭对水体中头孢噻肟的吸附机制   总被引:1,自引:0,他引:1  
采用液相浸渍方法制备3种改性生物炭,采用红外光谱、扫描电镜、比表面积测定仪和元素分析仪等手段表征生物炭表面结构形貌和组成.以头孢噻肟为探针分子,考察改性生物炭对头孢噻肟的吸附性能及吸附影响因素,并探究其吸附机理.结果表明,30min时碱改性生物炭(BC-NaOH)对头孢噻肟的吸附率为83%,符合伪二级动力学方程(R2>0.99),吸附率显著大于其他几种材料.热力学研究表明,BC-NaOH吸附头孢噻肟是自发放热过程.基于反应热力学及吸附率影响因素分析,得出BC-NaOH吸附头孢噻肟的机理是疏水亲和作用和静电引力.  相似文献   

6.
为探索高效利用生物质资源制备生物炭去除水体中的抗生素,以常见的米糠和麦麸为原料,在600℃限氧裂解制备成生物炭。通过各种影响因素的单因素实验和常用的表征方法,探讨其吸附四环素的效果和机理。结果显示2种生物炭均有分层分布的微孔结构和较大的比表面积,并含有羟基、酯、醚和芳香官能团。2种生物炭的吸附最优条件为:生物炭剂量均为4 g/L,四环素初始质量浓度为5 mg/L,溶液pH在5~9之间,环境温度25℃,吸附时间32 h,此时2种生物炭对四环素的去除率分别达到95.07%和90.4%。2种生物炭的等温吸附更符合Langmuir等温吸附方程,它们的吸附动力学更符合伪二阶动力学模型。吸附过程主要受控于化学吸附,是吸热反应。  相似文献   

7.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600 ℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500 ℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500 ℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500 ℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7.93 mg/g。  相似文献   

8.
为了解生物炭对水中Cr(Ⅵ)的吸附效果,本文选用蔬菜废物豆角秸秆为原材料,采用限氧升温法在400℃和700℃温度下制备了两种生物炭。并研究了投加量、初始浓度、pH值、吸附时间、温度等因素对生物炭吸附Cr(Ⅵ)的影响。研究结果表明,2种豆角秸秆生物炭对水中Cr(Ⅵ)均有较好的吸附率,吸附最佳条件略有不同;D400对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于40mg·L^-1,pH值2—3;D700对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于60mg·L^-1,pH值2—4;基本达到吸附平衡的时间均为60min;温度对生物炭吸附Cr(Ⅵ)的影响很小。  相似文献   

9.
为高效利用生物质能源,以常见农林废弃物柠条为原料,在650℃、3h条件下,采用限氧热裂解法制备生物炭,通过直接修饰法用Al改性柠条生物炭,进行批量吸附P实验.利用4种等温吸附模型(Langmuir、Freundlich模型、Temkim、D-R模型)和4种吸附动力学模型(准一级动力学、准二级动力学、Elovich模型、颗粒内扩散模型)以及pH值、添加量影响试验,探讨Al改性生物炭对P的吸附特性.同时,使用FTIR红外、元素分析、SEM和比表面积及孔径分析等技术表征了生物炭的理化性质,揭示了Al改性生物炭对P的吸附机理,并对比了多种改性生物炭对P的吸附效果.结果表明:柠条生物炭(NB)对P的吸附量很低,Al改性柠条生物炭(Al-NB)最佳改性比例为0.2:1,对P的吸附量是NB的8.35倍.Langmuir模型能够很好的描述Al-NB对P的等温吸附过程;Al-NB对P的吸附动力学符合准一级动力学模型,说明其吸附通过边界扩散完成的单层吸附.Al-NB对P的理论最大吸附量为19.97mg/g,平衡时间为24h.随着添加量的增大,Al-NB对P的吸附量不断减小,去除率逐渐增加,2.5g/L为最佳添加量;最适pH为4~10,当pH=7时,达到最大;吸附P后,溶液的pH值向中性范围倾靠,有一定缓冲作用.吸附机理包括:静电吸附作用,配体交换(羟基),P与阴离子(NO3-)交换,颗粒内表面络合作用等.以期为水体富营养化治理提供科学依据.  相似文献   

10.
选取木棉为原材料,在不同温度下制备成生物炭.实验考察了溶液初始pH、不同热解温度及生物炭投加量对吸附效果的影响,并利用吸附动力学、吸附等温线及SEM-EDS、FTIR、XPS、Zeta电位等手段研究木棉生物炭对水溶液Cr(Ⅵ)的吸附特性及吸附机理.结果表明,热解温度为400℃,固液比为2∶1,pH=2.0时,木棉生物炭对水溶液中Cr(Ⅵ)的吸附效果最好.吸附动力学和吸附等温线结果显示,颗粒内扩散方程和Langmuir模型更能较好地拟合吸附过程.由Langmuir模型可以看出,400、550、700℃热解温度下制备的木棉生物炭对水溶液中Cr(Ⅵ)的最大吸附量分别为25.325、20.602、19.616 mg·g-1.FTIR和Zeta结果表明,木棉生物炭主要通过官能团络合和静电吸附作用去除水溶液中Cr(Ⅵ).XPS分析结果显示,生物炭表面大部分Cr(Ⅵ)被还原为Cr(Ⅲ),其中,Cr(Ⅵ)占比为26.6%,Cr(Ⅲ)占比为73.4%.研究表明,木棉生物炭作为去除水溶液中Cr(Ⅵ)的吸附剂具有较大的应用潜力.  相似文献   

11.
The use of biochars formed by hydrothermal carbonization for the treatment of contaminated water has been greatly limited,due to their poorly developed porosity and low content of surface functional groups.Also,the most common modification routes inevitably require post-treatment processes,which are time-consuming and energy-wasting.Hence,the objective of this research was to produce a cost-effective biochar with improved performance for the treatment of heavy metal pollution through a facile one-step hydrothermal carbonization process coupled with ammonium phosphate,thiocarbamide,ammonium chloride or urea,without any posttreatment.The effects of various operational parameters,including type of modification reagent,time and temperature of hydrothermal treatment,and ratio of modification reagent to precursor during impregnation,on the copper ion adsorption were examined.The adsorption data fit the Langmuir adsorption isotherm model quite well.The maximum adsorption capacities(mg/g) of the biochars towards copper ions followed the order of 40-8 h-1.0-APBC(95.24) 140-8 h-0-BC(12.52) 140-8 h-1.0-TUBC(12.08) 140-8 h-1.0-ACBC(7.440) 140-8 h-1.0-URBC(5.277).The results indicated that biochars modified with ammonium phosphate displayed excellent adsorption performance toward copper ions,which was 7.6-fold higher than that of the pristine biochar.EDX and FT-IR analyses before and after adsorption demonstrated that the main removal mechanism involved complexation between the phosphate groups on the surface of the modified biochars and copper ions.  相似文献   

12.
为研究改性生物炭对砷镉复合污染水体中镉和砷的吸附特征。本研究以牛粪、污泥、竹屑三种不同原料制备生物炭,利用镧(La)对生物炭进行改性,并采用元素分析、扫描电镜、傅里叶变换红外光谱和X射线光电子能谱等分析手段对改性前后的生物炭进行表征,结合等温吸附实验及吸附动力学实验,对比各生物炭对As (V)、Cd (II)的吸附性能并探讨其内在机理。结果表明,竹屑炭(BB)的芳香性大于牛粪炭(CB)和污泥炭(SB)。La改性使三种生物炭在热解过程中形成了酮类、酯类、羰基等含氧官能团,并在表面引入羟基。X射线光电子能谱结果显示La以氢氧化物的形式负载在生物炭表面。各生物炭对Cd (II)、As (V)的吸附符合准二级吸附动力学和Langmuir等温吸附方程。La改性生物炭对As (V)的最大拟合吸附量达到3.47~4.51 mg/g,显著高于未改性生物炭(1.82~2.50 mg/g)(p<0.05)。在As (V)、Cd (II)吸附过程中,La改性生物炭表面的La与As (V)发生络合反应,同时Cd (II)与镧基氢氧化物发生配体交换,生成Cd (OH)2沉淀。本研究证明了La改性有效提高了生物炭对As (V)、Cd (II)同时吸附的能力。  相似文献   

13.
玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能   总被引:6,自引:0,他引:6  
为探明玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能,研究了其对NH4+-N、NO3--N和NO2--N的吸附动力学过程;并用等温吸附模型对NH4+-N和NO3--N的吸附过程进行拟合,探讨制得生物炭对无机氮的吸附机理.结果表明,400℃和600℃制得玉米秸秆和玉米芯生物炭均呈碱性,表现为400℃ < 600℃;同种原材料,与400℃制得生物炭相比,600℃制得生物炭碱性含氧官能团数量较多,而酸性含氧官能团数量较少.400℃制得生物炭对NH4+-N的吸附能力较强(玉米秸秆和玉米芯生物炭的平衡吸附量分别为4.22和4.09mg/g);而600℃制得生物炭对NO3--N和NO2--N的吸附能力较强(玉米秸秆和玉米芯生物炭对NO3--N的平衡吸附量分别为0.73和0.63mg/g;对NO2--N的平衡吸附量分别为0.55和0.35mg/g).与NO3--N和NO2--N相比,玉米秸秆和玉米芯生物炭对NH4+-N的吸附能力更强,4种生物炭对NH4+-N的平衡吸附量是NO3--N/NO2--N的4.29~20.2倍.等温吸附模型拟合研究表明,玉米秸秆和玉米芯生物炭对水溶液中NH4+-N和NO3--N的吸附过程均可用Freundlich模型描述,其在生物炭表面的吸附是多分子层吸附.  相似文献   

14.
采用铁、锰对水稻秸秆生物质碳(BC)进行改性,将制备所得的锰改性生物碳(Mn-BC)和铁锰改性生物碳(Fe-Mn-BC)作为吸附剂,用于对水中Sb (Ⅲ)的吸附实验.通过全自动比表面积及孔隙度分析仪(BET)、扫描电子显微镜(SEM)对吸附剂的表面性质进行研究,在吸附最佳pH值和投加量条件下开展等温吸附、动力学吸附及体系共存阴离子影响实验,探究改性生物炭的再生吸附能力,最后利用傅里叶红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)探究Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附机理.结果表明:改性生物炭具有更大的比表面积及总孔容积.BC在pH值为2,Mn-BC和Fe-Mn-BC在pH值为4,投加量为2.5g/L,25℃条件下,BC、Mn-BC和Fe-Mn-BC的最大吸附量分别为5.08,11.45,29.45mg/g.BC对Sb (Ⅲ)的吸附主要为物理吸附,Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附为化学兼具物理吸附.Mn-BC吸附Sb (Ⅲ)受F-、HCO3-和H2PO4-的影响较大,Fe-Mn-BC对Sb (Ⅲ)的吸附基本不受离子类型和离子强度的干扰.Fe-Mn-BC较Mn-BC具有更突出的吸附再生能力和重复利用性.Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附过程,先是氧化反应将大部分的Sb (Ⅲ)氧化为Sb (Ⅴ),再通过酸性条件下明显的静电作用,Sb (Ⅴ)与负载于Mn-BC上的Mn和Fe-Mn-BC上的Fe/Mn分别形成较为稳定的内层络合物Mn-O-Sb和Fe-O-Sb-Mn.此外,改性生物炭的官能基团-OH、C=O、N-H在吸附作用中也发挥着重要作用.  相似文献   

15.
生物炭对水中五氯酚的吸附性能研究   总被引:8,自引:0,他引:8  
郎印海  刘伟  王慧 《中国环境科学》2014,34(8):2017-2023
利用小麦秸秆和花生壳在300,400,600℃条件下制备生物炭,运用元素分析仪、扫描电镜和比表面积仪对生物炭的理化性质进行表征,同时探讨其对水中五氯酚(PCP)的吸附特性.结果表明,随炭化温度升高,生物炭芳香性增加,极性降低.花生壳生物炭对水中PCP的吸附效果优于小麦秸秆生物炭,3种温度制备的生物炭对PCP吸附量表现为400℃>600℃>300℃.随着生物炭添加量增大,水中PCP去除能力由81.79%提高至89.02%,生物炭的吸附量由30.32减小至5.54mg/g.生物炭对PCP的吸附动力学更符合准二级动力学方程,吸附等温线符合Freundlich方程.吸附过程主要受快速反应控制,降低反应温度有利于生物炭对水中PCP的吸附.  相似文献   

16.
利用磷溶菌(PSB)对稻壳(RB)和污泥(SB)生物炭进行不同时间的改性,研究了其对水体中Pb2+和Cd2+(1000mg/L)的修复机制.主要通过测定改性生物炭的理化特性和重金属含量,并利用结构方程模型研究了微生物改性生物炭对重金属的吸附机理.结果表明,PSB显著改善生物炭的孔径结构、比表面积BET (增加了12.5%~175.0%)和表面官能团.特别是还增加了生物炭中C和P元素的释放,促进了生物炭表面的生物矿化机制.PSB改性显著提高了生物炭对Pb2+和Cd2+的吸附作用(RB提高:Pb2+=9.5%~34.5%,Cd2+=34.7%~219.9%,SB提高:Pb2+=65.3%~101.3%,Cd2+=106.6%~248.6%).通过Pb和Cd的修复差异,发现不同重金属对微生物的胁迫是导致改性生物炭对重金属的修复反应路径相反的原因.此外,结构方程模型证实6~12h的PSB改性效果最好,且BET不是主要影响因素.不同的生物质炭改性后的修复机制也存在明显差异,孔径结构(Rmax2=0.99)是改性RB的主要吸附途径,化学沉淀(Rmax2=0.99)是改性SB的主要吸附途径.  相似文献   

17.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

18.
采用纳米零价铁基生物炭(nZVI-BC)耦合过二硫酸钠(PDS)或过硫酸氢钾(PMS)构建吸附-高级氧化复合体系开展水中土霉素(OTC)的高效降解。考察了在不同PDS/PMS浓度、nZVI-BC投量、OTC浓度及初始pH条件下OTC的去除规律,并对体系中活性物种进行探究。结果表明:在0.20 mmol/L PDS/PMS,0.01 g nZVI-BC,50 mg/L OTC,原始pH为5.0±0.1条件下,OTC去除率可达到80%以上;SO4-·在nZVI-BC/PDS体系中对OTC降解占有绝对主导地位(贡献度为57.00%),nZVI-BC/PMS体系则主要依靠SO4-·、O2-·和1O2。  相似文献   

19.
为了获得兼具磁分离和优良吸附性能的环境友好型吸附材料,以杉木(FW)为原材料制备生物质炭(FWBC),分别用沉淀法、浸渍法制得磁性生物质炭FWFe(2)、FWFe(3)。通过元素分析、磁性分析、SEM-EDS、XRD、FTIR等手段表征生物质炭吸附前后特性。研究了FWFe(2)、FWFe(3)对水中Pb2+的吸附特性,探讨了2种磁化方法吸附Pb2+的机理。结果表明:磁化后的生物质炭含有Fe3O4颗粒。FWFe(2)和FWFe(3)的饱和磁化强度分别为35.59,27.76 emu/g,具有良好的磁分离能力。FWFe(2)、FWFe(3)吸附Pb2+的过程符合准二级动力学和Langmuir等温吸附模型。FWFe(2)的吸附性能明显优于FWFe(3)和FWBC,平衡吸附量达到817.64 mg/g,是FWBC的12倍。采用沉淀法磁化的生物质炭可有效提高对水体Pb2+的吸附。吸附机理主要包括离子交换和金属(氢)碳酸盐共沉淀、物理吸附、与表面官能团的络合反应。研究结果有利于推进农林废弃生物质的资源化利用及磁性生物质炭在环境中的实际应用。  相似文献   

20.
通过固定床石英管热解装置将稻壳、木薯秸秆及玉米秸秆在350、450、500、550、600℃进行充分热解制备生物炭,利用图像识别技术获得生物炭的RGB值(红、绿、蓝三个通道的颜色)及相应的灰度值,研究了生物炭灰度值与其水溶液中的pH值及阳离子(NH4+-N及K+-K)吸附性能的关系.结果表明:3种生物炭的pH值随着灰度值的增加呈现“S”型增长趋势,并符合DoseResp模型,回归方程的决定系数(R2)分别为0.9766、0.9592和0.9219,残差平方和(RSS)均小于0.01;除玉米秸秆炭的K+-K吸附量与灰度值的关系为线性负相关外,3种生物炭的NH4+-N和K+-K吸附量与灰度值之间满足一元高次非线性模型,R2范围在0.8595~0.9999.本研究为快速预测生物炭在水溶液中的pH值和阳离子吸附性能提供了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号