首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fragile X syndrome is the most common form of inherited mental retardation, due to an expansion of the (CGG)n trinucleotide repeat in the FMR-1 gene and hypermethylation of its 5′ upstream CpG island. Two major problems remain to be resolved for fragile X prenatal diagnosis: the abnormal methylation patterns of chorionic villus samples (CVS) and the inability to predict the mental status of females with the full mutation. We present here the results of ten prenatal diagnoses of fragile X syndrome using Southern blotting and polymerase chain reaction (PCR) amplification, and the analysis of 50 further CVS to test the methylation status of the CpG island of the FMR-1 gene. In the ten ‘at-risk’ CVS, eight normal (five males and three females) and two affected male fetuses were detected. Absence of methylation in the CVS was observed in two cases, which was not found upon subsequent examination of the newborn or of fetal tissues. In the 50 CVS not ‘at risk’ for fragile X syndrome, abnormal fragment patterns for probe StB12.3 were detected in 32 per cent for female and 24 per cent for male fetuses. This abnormal pattern could be due to absent or partial methylation of the CpG island of the FMR-1 gene in chorionic villus tissues.  相似文献   

2.
Research towards preimplantation diagnosis of genetic disease was initiated in the UK. in the mid 1980s with the aim of helping those couples who would prefer selection to occur at this stage rather than during pregnancy. Following in vitro fertilisation, (IVF), biopsy and removal of 1 or 2 of the totipotent cells from the cleavage stage 3 day old embryo provides the material for molecular genetic diagnosis without interfering with development. Earliest applications were in the avoidance of X-linked disease by sexing embryos and selecting females for transfer to the mother. Initially, polymerase chain reaction (PCR) amplification of DNA from the biopsied blastomeres was performed using primers specific for sequences derived from the Y chromosome and this led to the birth of several normal girls. To reduce the risk of misdiagnosis due to amplification failure, PCR based methods for sexing the embryo now employ both X and Y specific sequences, but the preferred method is currently considered to be fluorescent in situ hybridisation (FISH) with fluorochrome labelled DNA probes to the embryonic nuclei that have been fixed and spread on slides. Dual FISH with probes from X and Y chromosomes allows unequivocal diagnosis of sex and determination of chromosome copy number, avoiding transfer of embryos with abnormal numbers of sex chromosomes, including those with only the maternal X that would be at 50% risk for the X-linked disease. The application of FISH for preimplantation diagnosis has also led to the realisation that chromosomal mosaicism is common at the cleavage stage of development, a finding that has important implications for diagnosis of both dominant single gene disorders and trisomies, as well as for our understanding of early human development. Cloning and sequencing of the relevant genes has enabled the development of methods for the diagnosis of certain recessive single gene disorders in cleavage stage embryos. PCR based methods have to be developed for each condition, sometimes for each family if there is heterogeneity. Preimplantation diagnosis has been successful so far for cystic fibrosis, Tay Sachs disease, and Lesch-Nyhan syndrome. Worldwide, 32 pregnancies have been established following all types of preimplantation diagnosis and with 29 babies born, there is no evidence for any adverse effect on development.  相似文献   

3.
随着我国红色旅游业的快速发展,以翻译为主要途径的外宣工作的重要性日益彰显,如何评价外宣文本的可读性逐渐成为学界关注的热点问题。文中以井冈山景区的英译文本为例,通过问卷调查和访谈的方式收集了十五位目标语读者关于外宣文本的反馈意见。结果显示:译文的可读性受文本质量、文本长度和读者背景等诸多因素的影响。由于译者对英译文本的目标语读者和文本功能认识不足,译文在词汇、语句和语篇等层面均存在不同程度的问题。  相似文献   

4.
In Cyprus all couples carrying α0-thalassaemia mutations are detected in the course of the thalassaemia carrier screening program and prenatal diagnosis is offered to all of them. Prenatal diagnosis for α-thalassaemia is routinely done by two independent molecular methods. With the first method, the mutations of the parents are directly determined by gap-PCR and then the chorionic villus sample (CVS) is examined for the presence of these mutations. With the other method, a (CA)n repeat polymorphic site located between the ψα1- and α2-globin genes is used for determining the presence or absence of the normal and mutant alleles. In the period from 1995 to 1999, molecular analysis of 46 couples in which haematological data were consistent with deletion of two α-globin genes in both partners indicated that only 13 of them were actually at risk for haemoglobin (Hb) Bart's hydrops fetalis and prenatal diagnosis was provided in 16 pregnancies. The molecular diagnosis was possible in all cases with the use of both gap-PCR and (CA)n repeat polymorphisms analysis. No misdiagnosed cases for α-thalassaemia have been reported to date. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Preimplantation genetic diagnosis for aneuploidy screening (PGD-AS) using sequential in situ hybridization was applied for aneuploidy testing in 276 couples with 282 ART cycles. Patients with advanced maternal age (AMA, n = 147), recurrent implantation failure (RIF, n = 48), repeated early spontaneous abortion (RSA, n = 32) and abnormal gamete cell morphology (AGCM, n = 55) including macrocephal sperm forms or cytoplasmic granular oocytes were included. Embryo biopsy was performed on day 3 in a calcium–magnesium–free medium by using a noncontact diode laser system. After fixation and enzymatic treatment, fluorescent in situ hybridization (FISH) was carried out on 1147 blastomeres with specific probes for chromosomes 13, 16, 18, 21 and 22 for AMA group, 13, 18, 21, X and Y for AGCM group and 13, 16, 18, 21, 22, X and Y for RIF and RSA groups respectively. The overall chromosomal abnormality rate in analyzed embryos was 40.9%, with no significant difference between AMA, RIF and RSA groups (p > 0.05). However, AGCM group presented a higher rate of chromosomal aneuploidies (57.4%) than the other three groups (p < 0.01). A total of 84% biopsied embryos presented cleavage in 24 h and embryo transfer was realized in 278 cycles. In four cycles, no chromosomally normal embryo was found for embryo transfer. A total of 88 pregnancies (31.6%) were achieved, 19.3% resulted in abortion and 63 healthy births were obtained, with a total of 93 babies born. Aneuploidy testing in couples with poor prognosis undergoing ART cycles is a useful tool to increase the chance of ART success. Furthermore, abnormal gamete cell morphology should be considered one of the major indications for PGD in ART programs as high aneuploidy rates were observed in this group. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The main difficulty in developing a molecular diagnosis of spinal muscular atrophy (SMA) resides in the specific genomic structure of the locus. Indeed, two highly homologous survival motor neurone genes, SMN1 and SMN2, are present at the locus. The detection of the homozygous deletion of exons 7 and 8 of the SMN1 gene, which is present in 90 to 98% of the patients, is based on methods highlighting 1 of the 8 nucleotidic mismatches existing between these 2 genes. In order to offer preimplantation genetic diagnosis (PGD) for SMA, we developed a new allele-specific amplification method. The main disadvantage of our previously described strategy resided in the possibility of diagnosing, in case of amplification failure, an unaffected embryo as affected. We present here a new PGD-SMA method. We established the conditions for three different duplex PCRs, allowing the specific detection of the SMN1 gene and one polymorphic marker, either D5S629, D5S1977, or D5S641. Of the 60 to 90 single cells tested, the PCR efficiency varied from 98 to 100% with a complete genotype obtained in a range between 81 and 87% with a global allele drop-out rate of 9%. Such a test was used to perform 1 PGD cycle for which 7 embryos could be analysed. All the embryos were fully diagnosed, six as unaffected and one as affected. Four embryos were transferred, but no pregnancy ensued. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
We report our experience of 14 preimplantation genetic diagnosis (PGD) cycles in eight couples carrying five different single gene disorders, during the last 18 months. Diagnoses were performed for myotonic dystrophy (DM), cystic fibrosis (CF) [ΔF508 and exon 4 (621+1 G>T)], fragile X and CF simultaneously, and two disorders for which PGD had not been previously attempted, namely neurofibromatosis type 2 (NF2) and Crouzon syndrome. Diagnoses for single gene disorders were carried out on ideally two blastomeres biopsied from Day 3 embryos. A highly polymorphic marker was included in each diagnosis to control against contamination. For the dominant disorders, where possible, linked polymorphisms provided an additional means of determining the genotype of the embryo hence reducing the risk of misdiagnosis due to allele dropout (ADO). Multiplex fluorescent polymerase chain reaction (F-PCR) was used in all cases, followed by fragment analysis and/or single-stranded conformation polymorphism (SSCP) for genotyping. Embryo transfer was performed in 13 cycles resulting in one biochemical pregnancy for CF, three normal deliveries (a twin and a singleton) and one early miscarriage for DM and a singleton for Crouzon syndrome. In each case the untransferred embryos were used to confirm the diagnoses performed on the biopsied cells. The results were concordant in all cases. The inclusion of a polymorphic marker allowed the detection of extraneous DNA contamination in two cells from one case. Knowing the genotype of the contaminating DNA allowed its origin to be traced. All five pregnancies were obtained from embryos in which two blastomeres were biopsied for the diagnosis. Our data demonstrate the successful strategy of using multiplex PCR to simultaneously amplify the mutation site and a polymorphic locus, fluorescent PCR technology to achieve greater sensitivity, and two-cell biopsy to increase the efficiency and success of diagnoses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Preimplantation diagnosis provides couples at high genetic risk the possibility of avoiding genetic disease without the need for prenatal diagnosis and selective abortion of the affected pregnancy. Following extensive background work on the reliability of genetic diagnosis in a single cell, we offered on a research basis preimplantation diagnosis to five couples at risk for offspring with the delta-F508 mutation (the major mutation causing cystic fibrosis). There was no detrimental effect from polar body removal on either fertilization or preimplantation development. Genetic analysis, undertaken in 22 polar bodies and 15 corresponding blastomeres, identified 21 embryos of which ten were transferred.  相似文献   

9.
Neurofibromatosis type 2 (NF2) is a dominantly inherited cancer predisposition syndrome that is caused bymutations in the NF2 gene. We report here the first clinical preimplantation genetic diagnosis (PGD) forNF2. A protocol was developed to simultaneously amplify the mutation and a single nucleotide polymorphism (SNP) located within the gene. The mutation and polymorphism were analysed by simultaneous fluorescent single-strand conformation polymorphism (SSCP) on an automated DNA sequencer. The mutation, carried by the male partner, was a single base pair substitution affecting a splice site in intron 4 of the gene. The female partner was infertile due to polycystic ovary syndrome and would require IVF to conceive. The couple was found to be informative at a linked intragenic SNP situated in the 5′ untranslated region of the gene. The SNP was included in the assay to reduce the risk of misdiagnosis due to allele dropout (ADO). The couple underwent three cycles of treatment during which a total of 43 blastomeres were biopsied from 31 embryos. Amplification at both loci was obtained in 35 cells (81%). A total of five embryos were transferred, two in the first cycle, two in the second and one in the third. No pregnancy ensued. The results of the diagnoses indicated that, in this couple, the inheritance of the mutation may be non-Mendelian. Out of a total of 32 embryos tested only four were found not to carry the mutation. The reasons for this apparent skew remain unknown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
An Erratum has been published for this article in Prenatal Diagnosis 23 (9), 2003, 771. Fragile X syndrome (SFX) is the commonest form of inherited mental retardation. Due to the highly variable phenotype clinical diagnosis is complicated. In nearly all cases, the disorder is caused by expansion of a CGG-repeat in the 5′-untranslated region of the FMR1 (fragile X mental retardation-1) gene. We have evaluated the feasibility, efficiency and costs of two methodologies in order to develop a simple test to screen large populations: PCR and fragile X mental retardation-1 protein (FMRP) immunodetection. We studied 100 newborn males using PCR and immunodetection (26.91 Euro). All but one amplified the CGG repeat of the FMR1 gene within the normal size range. The sample that failed to amplify showed only 28% of FMRP expression by immunodetection study; both results indicated an affected male. A further 100 males were studied only by polymerase chain reaction (PCR) (7.8 Euro); all of them amplified within the normal size range. Both methodologies, PCR and immunodetection, are feasible for screening large populations, PCR being the most suitable, economical and less time-consuming. However, it is advisable to keep slides for immunodetection when PCR fails or the external control shows no amplification. Early detection of SFX-affected individuals would represent a great benefit for their maximum social integration, due to appropriate treatment and early stimulation and would permit a cascade screening in their pedigree. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
As a preliminary step to preimplantation diagnosis of sickle cell disease in unfertilized eggs or 8-cell embryos of heterozygous parents, we established quality control for detection of the mutant and normal alleles of the beta-haemoglobin gene using single buccal cells. Efficient polymerase chain reaction (PCR) amplification of a 680 base pair sequence of the beta-globin gene spanning the site of the sickle cell mutation was obtained for 79 per cent of single heterozygous cells. In 71 per cent of cases, both alleles were detected. With this current efficiency, we predict that a clinical preimplantation diagnosis at the 8-cell embryo stage could be carried out safely and reliably for a couple at risk of transmitting sickle cell disease to their children.  相似文献   

12.

Objective

Genomics Quality Assessment has provided external quality assessments (EQAs) for preimplantation genetic testing (PGT) for 12 years for eight monogenic diseases to identify sub-optimal PGT strategies, testing and reporting of results, which can be shared with the genomics community to aid optimised standards of PGT services for couples.

Method

The EQAs were provided in two stages to mimic end-to-end protocols. Stage 1 involved DNA feasibility testing of a couple undergoing PGT and affected proband. Participants were required to report genotyping results and outline their embryo testing strategy. Lymphoblasts were distributed for mock embryo testing for stage 2. Submitted clinical reports and haplotyping results were assessed against peer-ratified criteria. Performance was monitored to identify poor performance.

Results

The most common testing methodology was short tandem repeat linkage analysis (59%); however, the adoption of single nucleotide polymorphism-based platforms was observed and a move from blastomere to trophectoderm testing. There was a variation in testing strategies, assigning marker informativity and understanding test limitations, some clinically unsafe. Critical errors were reported for genotyping and interpretation.

Conclusion

EQA provides an overview of the standard of preimplantation genetic testing-M clinical testing and identifies areas of improvement for accurate detection of high-risk embryos.  相似文献   

13.
Marfan syndrome (MFS) is an autosomal dominant disorder with a prevalence of 2–3 per 10 000 individuals. Symptoms range from skeletal overgrowth, cutaneous striae to ectopia lentis and aortic dilatation leading to dissection. Prenatal diagnosis was until recently mainly performed in familial cases by linkage analysis. However, mutation detection has become available with thorough screening methods. The phenotypic variability observed in MFS makes reproductive options difficult, as molecular diagnosis cannot predict clinical severity of the disease. Data are presented on 15 prenatal and/or preimplantation genetic diagnoses (PGD) in nine families, originating from Belgium, the Netherlands, Spain and France. In four families data from linkage analysis were used, whereas in five other families the causative FBN1 mutation was characterised. Four PGD cycles in two couples led to one ongoing pregnancy. In addition, two amniocenteses and nine chorionic villus (CV) samplings were performed. In five pregnancies an affected fetus was diagnosed. In one of them, the couple chose to continue the pregnancy and an affected child was born, whereas the other four couples decided to terminate the pregnancy. It is expected that the greater availability of mutation testing of the FBN1 gene will increase requests for prenatal diagnosis. PGD appears to be an acceptable alternative for couples facing ethical reproductive dilemmas. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Single cell polymerase chain reaction (PCR) for preimplantation genetic diagnosis (PGD) requires high efficiency and accuracy. Allele dropout (ADO), the random amplification failure of one of the two parental alleles, remains the most significant problem in PCR-based PGD testing since it can result in serious misdiagnosis for compound heterozygous or autosomal dominant conditions. A number of different strategies (including the use of lysis buffers to break down the cell and make the DNA accessible) have been employed to combat ADO with varying degrees of success, yet there is still no consensus among PGD centres over which lysis buffer should be used (ESHRE PGD Consortium, 1999 ). To address this issue, PCR amplification of three genes (CFTR, LAMA3 and PKP1) at different chromosomal loci was investigated. Single lymphocytes from individuals heterozygous for mutations within each of the three genes were collected and lysed in either alkaline lysis buffer (ALB) or proteinase K/SDS lysis buffer (PK). PCR amplification efficiencies were comparable between alkaline lysis and proteinase K lysis for PCR products spanning each of the three mutated loci (ΔF508 in CFTR 90% vs 88%; R650X in LAMA3 82% vs 78%; and Y71X in PKP1 91% vs 87%). While there was no appreciable difference between ADO rates between the two lysis buffers for the LAMA3 PCR product (25% vs 26%), there were significant differences in ADO rates between ALB and PK for the CFTR PCR product (0% vs 23%) and the PKP1 PCR product (8% vs 56%). Based on these results, we are currently using ALB in preference to PK/SDS buffer for the lysis of cells in clinical PGD. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Most of cystic fibrosis (CF) pre-implantation genetic diagnosis (PGD) cases described to date are limited to the detection of ΔF508. Beside this predominant mutation, over 1000 mutations have been identified, rendering the development of a mutation-based PGD protocol impracticable. This is the reason why we, as well as the others, have developed PGD strategies on the basis of the identification of the pathogenic haplotype instead of the mutation(s). In a previous article, we reported the conditions for the co-amplification of two intragenic polymorphic markers and the F508 locus. Here we describe an improved protocol allowing the additional amplification of two new intragenic markers, intron 1 CA repeat (I1CA) and IVS17bTA. This new protocol should, theoretically, allow us to provide a diagnosis to all couples requiring PGD for CF. Using single lymphoblasts, we have tested four different PCR configurations, including one duplex, two triplexes and one quadruplex PCR. All of them gave results compatible with a clinical application. The number of single lymphoblasts tested in each series varied from 89 to 155. PCR efficiency ranged from 95.4 to 100%. A complete haplotype was achieved for 83.2 to 90.7% of the tested cells, with an allele drop out (ADO) rate comprised between 6.0 and 11.6%. We present here three cases that we performed either with the former test (one case using the triplex PCR combining F508, IVS8CA and IVS17bCA) or with the new one (one case using the triplex combining F508, I1CA and IVS17bTA and one case using a quadruplex test). We obtained two single pregnancies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Discrimination of the M, Z, and S alleles of α1-antritrypsin (AAT) has been carried out using in vitro gene amplification with the polymerase chain reaction (PCR). Amplification of 90 nucleotides surrounding the Z mutation site and 120 nucleotides surrounding the S mutation site dramatically improves the sensitivity and reliability of allele-specific oligonucleotide (ASO) hybridization for direct detection of these alleles. Analysis is performed using Southern blots or dot blots hybridized with 19 base oligonucleotides and differentially washed for allele specificity. Amplification of the Z and S mutation sites can be combined in one PCR to allow detection of both mutations when analysed by gel electrophoresis and Southern transfer. This technique can be performed reliably using less than 0·1 μg of genomic DNA or less than 100 amniocytes or white blood cells. This technique has been used to perform prenatal diagnosis on a chorionic villus sample (CVS) in a fetus at risk for the ZZ Pi type form of AAT deficiency.  相似文献   

17.
Preimplantation genetic diagnosis (PGD) was developed more than a decade ago to offer an alternative to prenatal diagnosis for couples at risk of transmitting an inherited disease to their offspring. Portuguese-type familial amyloidotic polyneuropathy (FAP type I), is an autosomal dominant disease presenting an inherited mutation in the gene encoding the plasma protein transthyretin (TTR). We here report the first protocol for single-cell detection of the Met30 mutation in FAP type I and its application to PGD. A nested PCR reaction for exon 2 of the TTR gene was developed. The PCR product was then analysed by restriction enzyme analysis and SSCP allowing the detection of the point mutation. Ten clinical cycles were performed in seven couples. From the 93 metaphase II (MII) injected oocytes, 82 were normally fertilized and 78 were biopsied. A positive signal in the nested PCR reaction was obtained in 61 blastomeres, corresponding to a DNA amplification efficiency of 78.2%. No allele dropout (ADO) or contamination were detected. A biochemical pregnancy was obtained in three cases and a clinical pregnancy in one couple is actually in normal evolution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Preimplantation genetic diagnosis (PGD) is an alternative to prenatal diagnosis for couples at risk of transmitting genetic disorders to their offspring. We present a fluorescence in situ hybridization (FISH) analysis of embryos obtained after seven PGD cycles in six couples with Robertsonian translocations and male factor infertility: 4 der(13;14), 1 der(14;21) and 1 der(15;21). Of 74 metaphase II (MII) injected oocytes, 61 (82.4%) fertilized normally and cleaved. Of these, 37/61 (60.7%) embryos were of high morphological quality with ≥6 blastomeres. After biopsy of 44 embryos at day 3 of development, seven degenerated, seven arrested in development and 30/44 (68.2%) evolved, of which 25/30 (83.3%) reached the morula/blastocyst stage. Analysis of biopsied blastomeres showed 23/44 (52.3%) of normal/balanced embryos, of which 15 (11 at the morula/blastocyst stage) were transferred in six cycles. One term pregnancy was achieved, which ended by cesarean section at 37 weeks of gestation, giving birth to two healthy newborn. Analysis of 49 embryos (excluding 12 inconclusive cases) showed a predominance of alternate segregation (38/49, 77.6%) over adjacent segregation (7/49, 14.3%), with one (2%) being a polyploid mosaic and three (6.1%) chaotic. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Spinal muscular atrophy (SMA) preimplantation genetic diagnosis (PGD) has been available since 1998. Protocols are based on the detection of the homozygous deletion of exon 7, which are present in 90–98% of SMA patients. A couple where the woman was a heterozygous carrier of the usual SMN1 Del7 mutation and the man was a heterozygous carrier of pMet263Arg substitution in exon 6 of SMN1 gene was referred for PGD. The usual PGD test being unsuitable for this couple, we developed a novel duplex polymerase chain reaction (PCR)-based PGD test for the detection of the mutation pMet263Arg by allele specific amplification, combined with the amplification of D5S641 extragenic polymorphic marker. PCR conditions were established using single control lymphoblasts and lymphocytes from the pMet263Arg substitution carrier. Amplification was obtained in 100% of the 86 single cells tested, amplification refractory mutation system (ARMS) PCR was specific in 100% of single cells tested and a complete genotype (mutation plus D5S641) was achieved in 88% of them. A PGD cycle was performed successfully and a pregnancy was obtained. An unaffected girl was born and postnatal diagnosis confirmed PGD results. This is the first PGD described for SMA because of another mutation than the major homozygous exon 7 deletion of SMN1. In the future, a similar strategy could be adopted for other subtle mutations of this gene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Direct detection of the fragile X mutation by DNA analysis has greatly simplified prenatal diagnosis of this disease. However, women carrying a fragile X premutation may pass their expanded trinucleotide repeat to sons without expansion to a full mutation. Such sons are predicted to be intellectually normal. In this situation, the accuracy with which the fetal status can be inferred from analysis of chorionic villus sample (CVS) DNA is unclear. We describe such a case, in which it was felt necessary to proceed to fetal blood sampling despite technically unambiguous DNA results from the CVS. The lack of prospective data means that this dilemma may be expected to recur over the next few years when performing prenatal diagnosis on fragile X premutation carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号