首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
唐山夏季大气VOCs污染特征及臭氧生成潜势   总被引:3,自引:2,他引:1       下载免费PDF全文
丁洁然  景长勇 《环境工程》2016,34(6):130-135
在唐山市区对大气环境VOCs进行样品采集,对VOCs污染特征及臭氧生成潜势进行了分析。结果表明:唐山市区VOCs主要以烷烃和芳香烃为主,分别占VOCs总质量浓度的50.3%和30.4%。烷烃和烯烃以丁烷和丙烯等组分为主,芳香烃以苯、甲苯、乙苯和二甲苯为主。由于污染源排放强度、气象条件和光化学反应强弱的影响,VOCs浓度有明显的小时变化特征,8:00—10:00浓度最高,中午较低,且与早上相比,烯烃浓度降低比例中午最大。VOCs臭氧生成潜势敏感性组分以烯烃为主,占总VOCs臭氧生成潜势贡献的49.0%~66.8%,其主要敏感性种类为丙烯。  相似文献   

2.
吴亚涛  刘兆荣 《中国环境科学》2015,35(11):3201-3210
为研究冬季VOCs类物质的室内外相关性,于2014年11月5日~12月11日对一间无人为活动的房间的空气进行了室内外同步采样,定量分析了98种VOCs物质,并将其分为烷烃、烯烃、芳香烃、卤代烃和含氧烃五类,分别讨论了VOCs的浓度水平、I/O、室内外相关系数和分类间的相关系数,并利用质量平衡模型初步估计了室外源对室内VOCs的贡献情况.研究表明,五类VOCs的室内浓度均大于室外浓度,且烷烃>含氧烃>卤代烃>烯烃;五类VOCs均同时存在室内源和室外源;对于VOCs的室内外相关性,烯烃和含氧烃分别为相关性最差和最好的组分,同时,r(卤代烃)>r(烷烃)>r(芳香烃);对于物质间的相关性,烷烃-烯烃的相关性在室内外均最高(rin=0.805,rout=0.888,P£0.01),卤代烃-含氧烃之间的相关性最差(rin=0.491,P£0.05;rout=0.529,P£0.01);室外源对室内浓度的贡献率与VOCs的种类相关,贡献率均值最高的是卤代烃类(56.57%),之后依次是烷烃(46.64%)、烯烃(40.10%)、含氧烃(33.98%)和芳香烃(20.67%).此外,APEC峰会后VOCs的浓度水平、I/O、室内外相关性以及物质间的相关性均高于峰会前的对应值.  相似文献   

3.
小型乘用车内直链烃和芳香烃污染特征研究   总被引:1,自引:0,他引:1  
文章依托美国EPA TO-15建立的罐采样-GC/MS测定环境空气中挥发性有机物(VOCs)的方法,对重庆市在售的国产/进口各类小型乘用车内空气VOCs进行测定。分析结果表明,车内空气均存在不同程度的污染,TVOC浓度范围在0.20~50.80 mg/m3之间,均值为5.42mg/m3,约75%新车TVOC浓度大于5 mg/m3。检测出烷烃和烯烃等直链烃15种,芳香烃13种,并且芳香烃浓度明显高于烷烃和烯烃。在直链烃中,四氯乙烯及二氯甲烷的浓度最高,均值为0.235 mg/m3和0.208 mg/m3,芳香烃以甲苯居多,均值为0.58 mg/m3。80%以上的新车含有二氯甲烷、二氯乙烯、苯、甲苯、二甲苯、三甲苯及苯乙烯等污染物。  相似文献   

4.
生物质成型燃料锅炉挥发性有机物排放特征   总被引:1,自引:0,他引:1  
以5台燃成型生物质燃料锅炉为研究对象,基于预浓缩-GC-MS/FID的测量方法,对成型生物质燃烧产生的烟气进行了挥发性有机物(VOCs)排放特征研究,同时还测定颗粒物、NO_x、SO_2和汞及其化合物的排放浓度.结果表明,5台锅炉所排放的SO_2和汞及其化合物均低于排放标准要求,而氮氧化物和颗粒物的排放存在高于国标排放限值现象.56种VOCs总质量浓度在(872.43±293.80)~(6 929.66±1 137.25)μg·m~(-3)之间,影响因素分析表明VOCs浓度与炉膛中心温度及负荷有较强负相关性.VOCs的排放中烯烃占比最大,达41%~59%,其次是烷烃和芳香烃,分别为27%~49%和6%~18%.烯烃的排放以乙烯、1-丁烯、顺-2-丁烯和1-己烯为主,烷烃以正己烷、异戊烷和环戊烷为主,芳香烃则以苯和甲苯为主.臭氧生成潜势采用最大增量反应活性法进行分析,5台锅炉的臭氧生成潜势贡献主要来自于烯烃,高达76%~90%,而烷烃也可占6%~19%.  相似文献   

5.
分别采集了医院和实验室环境空气样品,通过GC-MS/FID对样品进行定性分析.共定性检测出116种挥发性有机物(VOCs).在这两类环境中检出频次较高的VOCs物种包括乙烷、丙烷、正丁烷等烷烃;乙烯、丙烯、1-丁烯等烯烃;苯、甲苯、乙苯等芳香烃;氯甲烷、二氯甲烷等卤代烃和丙酮等含氧有机物.在实验室中经常使用的试剂如正己烷、甲苯、乙醇、丙酮等呈现较高的水平,高于室外1~3个数量级.在医院的部分候诊区中检出较高浓度的甲苯、乙苯、二甲苯,需要引起关注.  相似文献   

6.
2016年7月在广州城区开展了27d的大气VOCs在线监测,共得到73种VOCs,总浓度均值为40.07×10-9.其中烷烃占比55.17%,芳香烃占比15.42%,烯烃占比12.14%,氯代烃占比8.79%,乙炔占比3.97%,OVOC占比3.72%,乙腈占比0.79%.采用臭氧生成潜势(OFP)和OH自由基消耗速率估算了广州城区夏季VOC大气化学反应活性,结果表明芳香烃和烯烃是最主要的活性物种;VOCs的关键活性组分是甲苯、反-2-戊烯、间/对二甲苯、1,3-丁二烯、异戊二烯等.采用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,结果显示芳香烃、烷烃、烯烃分别占总SOA生成潜势量的95.54%、2.5%、1.95%,甲苯、间/对二甲苯、乙苯、邻二甲苯、1,2,4-三甲基苯是对SOA生成贡献最大的前5个物种.  相似文献   

7.
南京北郊大气VOCs变化特征及来源解析   总被引:10,自引:8,他引:2  
安俊琳  朱彬  王红磊  杨辉 《环境科学》2014,35(12):4454-4464
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs浓度变化特征和特征物比值差异展开研究,并应用PCA/APCS受体模型对不同季节VOCs来源进行了解析.结果表明,南京大气总VOCs体积混合比为43.52×10-9,其中烷烃占45.1%、烯烃占25.3%、炔烃占7.3%和芳香烃占22.3%.总VOCs体积混合比呈现夏季高,冬季低的季节变化.VOCs组分中烷烃在冬季最高,烯烃夏季最高,芳香烃春季最高,炔烃冬季最高.特征物比值(VOCs/乙炔)和T/B比值反映出观测点受周边工业区影响较大.VOCs源解析表明,主要来源来自工厂生产、机动车排放、燃料燃烧、生产活动挥发、溶剂使用和自然源.虽然有季节变化,但与工业生产活动相关的来源占大气VOCs 45%~63%,其次为机动车来源占34%~50%.  相似文献   

8.
林旭  严仁嫦  金嘉佳  许凯儿 《环境科学》2022,43(4):1799-1807
2019年3月1日~2019年5月31日期间采用Syntech Spectras GC955在线气相色谱仪对杭州市大气环境中挥发性有机物(VOCs)进行了在线连续监测,分析了VOCs体积分数的组成特征、 PM2.5和O3协同控制的优控VOCs物种和VOCs特征污染物比值.结果表明,烷烃是VOCs体积分数中最重要的组分,贡献了62.40%. C2~C6的烷烃、苯系物、乙烯和乙炔是VOCs关键物种.烯烃和芳香烃是OFP的主要贡献组分,贡献率分别为41.35%和37.50%.芳香烃是SOA的主要贡献者,贡献率超过90%.低碳的烷烃、低碳烯烃和苯系物是OFP的关键贡献物种,控制好甲苯、间/对-二甲苯和邻-二甲苯这3种苯系物,是O3和PM2.5协同控制的关键.采样点大气中VOCs除了受机动车尾气的影响外,溶剂使用等工业排放的影响也较为显著.  相似文献   

9.
成都市大气环境VOCs污染特征及其健康风险评价   总被引:8,自引:6,他引:2  
于2012年9月,在成都市分别选取代表城市大气环境和路边大气环境的两个采样点对大气中挥发性有机物(VOCs)进行采样,对不同大气环境中VOCs的浓度水平与变化特征、组成和反应活性进行分析,并对其中的芳香烃化合物进行健康风险评价.结果表明,成都市城市大气环境和路边大气环境中TVOCs的平均质量浓度分别为(108.57±52.43)μg·m~(-3)和(132.61±49.31)μg·m~(-3),不同大气环境中各烃类物质浓度均呈现出烷烃芳香烃烯烃炔烃的趋势;城市和路边大气环境中芳香烃和烯烃对臭氧生成潜势(OFP)贡献较大,关键物种均为间/对二甲苯、甲苯、乙烯、邻二甲苯和丙烯;不同大气环境中的苯、甲苯、乙苯和二甲苯(BTEX)对人体的非致癌风险和危害指数均小于1,对暴露人群不存在非致癌风险;致癌物质苯对人体的致癌风险高于安全阈值1.00E-06,对暴露人群可能存在致癌风险.  相似文献   

10.
为研究石化行业VOCs的排放特征及其环境影响,选取山东省3家典型地方炼化企业开展样品采集和物种分析,并利用MIR(最大增量反应活性)法和SOAP(二次有机气溶胶生成潜势)法量化其对二次污染生成的贡献.结果表明,不同生产类型企业VOCs排放组成差异较大.从体积浓度来看,企业A各采样点位以芳香烃(30.4%~92.2%)为主要排放化合物;企业B排放以烷烃(15.4%~53.8%)、烯炔烃(11.4%~71.7%)和含氧VOCs(0.1%~53.8%)为主;企业C则主要排放烷烃(6.1%~95.3%)和烯炔烃(1.2%~93.1%).从合成源谱来看,企业A以芳香烃为主要化合物,乙苯、苯、苯乙烯、甲苯为高排放物种;企业B中烷烃、烯炔烃和含氧VOCs均有较高占比,1-丁烯、甲基乙基酮、反-2-丁烯、异丁烷、甲苯为主要物种;企业C则主要排放烷烃类化合物,包括异丁烷、丙烷、环戊烷.OFP(臭氧生成潜势)评估结果表明,芳香烃化合物包括乙苯、苯乙烯、苯和甲苯,其对企业A的贡献最大;企业B中,烯炔烃化合物包括1-丁烯、反-2-丁烯、异戊二烯,其OFP占比最高;企业C则以烯炔烃和烷烃为高贡献化合物,其中丙烯、异丁烷、间/对-二甲苯、顺-2-丁烯为关键活性物种.SOAP评估结果表明,各企业SOA(二次有机气溶胶)的生成均由芳香烃主导,关键活性物种为甲苯、苯乙烯、苯、间/对-二甲苯.研究显示,地方炼化企业所排的VOCs组分复杂且存在显著的工艺差异,应根据筛选出的关键活性组分制定针对性的VOCs减排策略.   相似文献   

11.
北京市大气中挥发性有机物的组成特征   总被引:34,自引:0,他引:34  
采用预浓缩—GC-MS方法分析了北京市大气中挥发性有机物(VOCs)的组成,共检测出108种,其主要成分是饱和烷烃(33%)、芳香烃(21%)、烯烃(16%)、卤代烷烃(20%)、卤代烯烃(9%)和卤代芳香烃(1%),总VOCs平均质量浓度为(163 7±39 0)μg m3。更重要的是,在检出物中有54种是有毒有害的物质,主要成分是苯系物和卤代烃,其中苯,甲苯,丙烯,1,3-丁二烯,氯乙烯和1,2-二氯乙烷是含量最高的组分。   相似文献   

12.
上海城区典型污染过程VOCs特征及臭氧潜势分析   总被引:10,自引:7,他引:3  
利用在线气相色谱-氢火焰离子化(GC-FID)监测系统对上海市城区典型污染前、污染中和污染后的55种挥发性有机物(VOCs)进行了自动连续监测,分析了各个阶段VOCs(C2~C12)体积分数、物种变化特征.结果表明上海市城区典型污染前VOCs平均体积分数为27×10-9;污染中VOCs体积分数迅速增加,比污染前高3倍,达到87×10-9;具体以烷烃最高(35.2×10-9)、芳香烃次之(30.0×10-9)、烯烃最低(21.6×10-9);用最大臭氧生成潜势量(ΦOFP)对不同污染阶段污染VOCs大气活性进行了评估,结果表明不同污染阶段VOCs的ΦOFP均呈现污染前〈污染后〈污染中的变化特征.污染前期的ΦOFP依次是芳香烃(53.0%)〉烯烃(36.1%)〉烷烃(11.7%);污染中期的ΦOFP依次是芳香烃(54.7%)〉烯烃(36.7%)〉烷烃(9.8%);污染后期ΦOFP则依次是烯烃(52.7%)〉芳香烃(36.0%)〉烷烃(13.2%).具体关键活性物种主要包括甲苯、间、对二甲苯、1,3-丁二烯、乙烯、丙烯等芳香烃和烯烃物种,具体以烯烃C2~C4为主,芳香烃C6~C8为主.不同污染阶段O3与ΦOFP之间存在典型的非线性负相关关系,并且ΦOFP转化为O3的量均小于20%,说明臭氧浓度仍有很大上升空间;这对定量评估大气中VOCs对臭氧的影响具有重要意义.  相似文献   

13.
轻型汽车和汽车塑料配件涂装工艺过程的VOCs组分特征   总被引:6,自引:1,他引:5  
通过采集和分析珠江三角洲(以下简称“珠三角”)地区轻型汽车和汽车塑料配件涂装工艺过程的VOCs样品,识别了上述两个行业不同涂装工艺过程的VOCs组分特征.结果表明:芳香烃(56.4%~75.5%)和OVOCs(11.0%~35.7%)为轻型汽车涂装工艺占比最大的两种VOCs组分;烷烃和烯炔烃在烘干工艺所占比重要高于喷涂工艺;1,2,4-三甲苯为电泳和面涂烘干工序的主要VOCs组分,间/对-二甲苯、乙酸丁酯、丙二醇甲醚醋酸酯分别为中涂、面涂和中涂烘干工序的主要VOCs组分.汽车塑料配件涂装工艺不同工序的VOCs组成相似,芳香烃(53.3%~58.3%)和OVOCs(40.9%~45.8%)为主要VOCs组成,甲苯、乙酸乙酯、乙酸丁酯等为主要VOCs组分.不同废气治理设施对汽车塑料配件涂装工艺VOCs组分会造成一定的影响.活性炭吸附治理设施处理后的主要VOCs组分为甲苯、乙苯和邻二甲苯等芳香烃组分,水喷淋治理设施则为乙酸乙酯、乙酸丁酯和丙二醇甲醚醋酸酯等OVOCs类组分.通过与其他研究对比,丙二醇甲醚醋酸酯作为原辅料和废气中的主要组分之一,在以往研究中并未识别出来,表明针对测试对象的原辅料与工艺信息的现场调研是开展VOCs组分特征及成分谱研究的基础工作,建议未来该方面研究加强对前期调研工作的重视.此外,建议关注行业发展趋势给VOCs成分谱研究带来的影响.  相似文献   

14.
通过苏玛罐采样和GC-MS/FID分析系统,测定了山东地区典型胶合板制造企业的VOCs排放特征.结果表明,烷烃(13.81%~39.16%)、含氧VOCs(5.68%~36.06%)和芳香烃(3.58%~48.12%)是热压和涂胶工艺主要排放成分,废气排口以含氧VOCs(6.49%~83.88%)排放为主,不同工艺环节的特征VOCs组分各有不同;烯炔烃(27.12%~39.38%)和芳香烃(32.47%~45.63%)是热压工艺和涂胶工艺的高OFP组分,废气排口则以含氧VOCs(52.82%)对O3生成贡献最大;基于SOAP评估,各环节均以芳香烃类化合物(97.08%~98.03%)为主要活性组分;测得山东地区胶合板制造行业VOCs排放因子为0.89g VOCs/m3胶合板.  相似文献   

15.
叶露  邰菁菁  俞华明 《环境科学》2021,42(2):624-633
挥发性有机物(volatile organic compounds,VOCs)作为臭氧和细颗粒物的重要前体物已日益受到关注.鲜有针对汽车工业区大气VOCs长期观测的报道.2019-01-01~2019-12-31期间在上海某汽车工业园区边界,采用在线气相色谱仪对79种VOCs组分定量检测,分析大气VOCs组成和变化特征,并利用最大增量反应活性(MIR)和·OH消耗速率法(L·OH)估算大气化学反应活性,应用VOCs特征物比值法和主因子分析法对VOCs进行来源解析.园区大气总VOCs体积分数为26.5×10-9,其中烷烃占比50.2%,烯烃为9.8%,芳香烃为22.4%,卤代烃为10.8%,炔烃占6.8%,呈现冬季高,夏季低的季节变化特征.园区大气VOCs总OFP为73.2×10-9,烷烃、烯烃和芳香烃的贡献率分别为14.7%、35.9%和45.2%,总L·OH为165.3 s-1,其中烯烃和芳香烃的贡献率为30.4%和48.9%.化学反应活性贡献率较高的组分有间/对-二甲苯、乙烯、丙烯、甲苯和邻-二甲苯.甲苯/苯(T/B)比值和乙烷/乙炔(E/E)比值表明观测点气团新鲜,靠近污染源.园区大气VOCs主要来源为汽油尾气源(19.4%)、溶剂使用源(30.8%)、燃烧源(11.0%)、柴油使用源(8.9%)和燃气使用源(4.5%).  相似文献   

16.
采用Tenax-TA吸附/热脱附-气相色谱法(TD-GC)对大学校园室内外空气中5种苯系物(BTEX,苯、甲苯、乙苯、间/对-二甲苯和邻二甲苯)的平均浓度进行了检测。检测结果显示,5种苯系物的平均浓度均低于国家标准值。被测空气的苯系物中甲苯所占比例最大,为27.9%~32.0%。室内BTEX浓度稍高于室外,多数采样点的室内浓度与室外浓度比值(CI/CO)大于1.0。通风可有效降低空气中苯系物浓度。大学校园室内空气中的苯对学生的致癌风险为3.67×10-7~1.09×10-6。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号