首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Cooperative prey retrieval in the monomorphic ant Formica schaufussi is carried out by workers that perform functionally distinct roles which persist only for the duration of a single retrieval event. A forager (scout) that locates prey too large to retrieve individually organizes cooperative prey transport by recruiting nestmates (recruits) to assist in retrieval. The scout and recruit roles appear to be determined by whether a worker activates recruitment or is recruited from the nest. Scouts organize recruitment and play a key role in maintaining the cohesion of the retrieval group. If a scout that has initiated group transport is experimentally removed, the recruited workers composing the retrieval group typically abandon the prey and cooperative foraging is terminated. In this context, recruits are unable to function as scouts and reorganize group transport. Individuals marked as recruits in one prey retrieval, however, can switch and act as scouts in subsequent retrievals. Because the roles of individuals persist within but not between retrieval events, the specialization involved in cooperative prey retrieval cannot easily be explained as a response associated with age-related or genetic predispositions. This transient division-of-labor, in which individual roles may persist only for the duration of a single group action, represents a novel type of short-term individual specialization.  相似文献   

2.
Most small-colony termites live confined within a single piece of wood on which they feed and do not possess permanent workers: Tasks are done by developmentally flexible immatures (pseudergates). By contrast, large-colony termites possess a specialized (true) worker caste and forage outside their nest for food. To shed light on possible transitional steps between these contrasting patterns of social organization, we studied an atypical Rhinotermitidae, Prorhinotermes inopinatus. In this species, despite the absence of a true worker caste, soldiers, pseudergates, and neotenic reproductives may leave the nest and explore their surroundings. Although evidence presented in this study indicates that termites recognize unknown areas, there is no directional recruitment toward them. The discovery of a food source, i.e., a piece of wood, is followed by the establishment of a long-lasting trail between the nest and the food source. A large fraction of the colony, including neotenic reproductives, ultimately migrates into the piece of wood. Our results thus demonstrate that multiple features of external foraging behavior can evolve independently of the existence of a true worker caste in termites. We suggest that large colonies with true workers, like those of most Rhinotermitidae, may easily have evolved from a Prorhinotermes-like pattern if submitted to increasing selective pressures for worker efficiency in a stable environment.  相似文献   

3.
Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least ±6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least ±5 m or ±10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.  相似文献   

4.
We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey’s hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate.  相似文献   

5.

A termite colony is usually founded by a pair of alates, the primary reproductives, which produce all the nestmates. In some species, secondary reproductives appear to either replace the primaries or supplement colony reproduction. In termites, secondary reproductives are generally ergatoids derived from workers or nymphoids derived from nymphs. Silvestritermes euamignathus is a termite species that forms multiple nymphoid reproductives, and to date it was hypothesized that these secondary reproductives were the progeny of the primary founding reproductives. We developed markers for 12 microsatellite loci and used COI mitochondrial DNA (mtDNA) to genotype 59 nymphoid neotenics found in a colony of S. euamignathus to test this hypothesis. Our results showed that nymphoids of S. euamignathus are not all siblings. The microsatellite analysis suggests that the secondary reproductives derived from a minimum of four different pairs of reproductives belonging to at least two different matrilines. This is the first record of non-sibling secondary reproductives occupying the same nest in a higher termite. These unrelated reproductives might be the result of either pleometrotic colony foundation or colony fusion.

  相似文献   

6.
A giant termite is described and figured from the Late Miocene of the Styrian Basin in southeastern Austria. Gyatermes styriensis gen. n. et sp. n. is represented by a relatively complete forewing, with basal scale. The fossil approximates in size the largest of all termites today and is the largest fossil termite on record. The presence of this species in the Late Miocene fauna of Europe indicates that climatic conditions were appropriate for the persistence of species and colonies requiring relatively stable, warm conditions. The genus is primitive in overall features but shares some similarity with the dampwood termites.  相似文献   

7.
An important aspect of social insect biology lies in the expression of collective foraging strategies developed to exploit food. In ants, four main types of foraging strategies are typically recognized based on the intensity of recruitment and the importance of chemical communication. Here, we describe a new type of foraging strategy, “tandem carrying”, which is also one of the most simple recruitment strategies, observed in the Ponerinae species Pachycondyla chinensis. Within this strategy, workers are directly carried individually and then released on the food resource by a successful scout. We demonstrate that this recruitment is context dependent and based on the type of food discovered and can be quickly adjusted as food quality changes. We did not detect trail marking by tandem-carrying workers. We conclude by discussing the importance of tandem carrying in an evolutionary context relative to other modes of recruitment in foraging and nest emigration.  相似文献   

8.
While foraging, social insects encounter a dynamic array of food resources of varying quality and profitability. Because food acquisition influences colony growth and fitness, natural selection can be expected to favor colonies that allocate their overall foraging effort so as to maximize their intake of high-quality nutrients. Social wasps lack recruitment communication, but previous studies of vespine wasps have shown that olfactory cues influence foraging decisions. Odors associated with food brought into the nest by successful foragers prompt naive foragers to leave the nest and search for the source of those odors. Left unanswered, however, is the question of whether naive foragers take food quality into account in making their decisions about whether or not to search. In this study, two different concentrations of sucrose solutions, scented differently, were inserted directly into each of three Vespula germanica nests. At a feeder away from the nest, arriving foragers were given a choice between two 1.5 M sucrose solutions with the same scents as those in the nest. We show that wasps chose higher-quality resources in the field using information in the form of intranidal food-associated odor cues. By this simple mechanism, the colony can bias the allocation of its foraging effort toward higher-quality resources in the environment.  相似文献   

9.
Recruitment precision, i.e. the proportion of recruits that reach an advertised food source, is a crucial adaptation of social bees to their environment. Studies with honeybees showed that recruitment precision is not a fixed feature, but it may be enhanced by factors like experience and distance. However, little is known regarding the recruitment precision of stingless bees. Hence, in this study, we examined the effects of experience and spatial distance on the precision of the food communication system of the stingless bee Scaptotrigona mexicana. We conducted the experiments by training bees to a three-dimensional artificial patch at several distances from the colony. We recorded the choices of individual recruited foragers, either being newcomers (foragers without experience with the advertised food source) or experienced (foragers that had previously visited the feeder). We found that the average precision of newcomers (95.6 ± 2.61%) was significantly higher than that of experienced bees (80.2 ± 1.12%). While this might seem counter-intuitive on first sight, this “loss” of precision can be explained by the tendency of experienced recruits to explore nearby areas to find new rewarding food sources after they had initially learned the exact location of the food source. Increasing the distance from the colony had no significant effect on the precision of the foraging bees. Thus, our data show that experience, but not the distance of the food source, affected the patch precision of S. mexicana foragers.  相似文献   

10.
 The myrmicine ant Mayriella overbecki lays recruitment trails during foraging and nest emigrations. The trail pheromone originates from the poison gland. From ten identified components of the poison gland secretions only methyl 6-methylsalicylate 1 elicited trail following behavior. Received: 6 April 2000 / Accepted in revised form: 6 June 2000  相似文献   

11.
 Dampwood termites, Zootermopsis angusticollis, show an alarm response after detecting the presence of spores of the pathogenic fungus Metarhizium anisopliae. Termites in direct contact with a high concentration of spores (107 spores/ml) show a striking vibratory display which appears to convey information about the presence of pathogens to nearby unexposed nestmates through substrate vibration. Nestmates not directly in contact with spores that perceive the vibrational signal increase significantly their distance from the spore-exposed vibrating termites, apparently to escape from the source of infection. The fleeing response is not induced by the presence of the spores alone or by pheromones, and requires the perception of the vibrations propagated through the substrate. This "pathogen alarm behavior" appears to be a previously unrecognized communication mechanism that allows termites to reduce disease risks within the nest. Received: 12 May 1999 / Accepted in revised form: 26 August 1999  相似文献   

12.
Animals obtain information from past foraging experience to adjust their foraging activity according to their environment. The ability of spiders to obtain information from unsuccessful predation experiences was investigated by examining the effects on web building, a significant foraging investment, of prey detection without successful capture in the orb-web spider Cyclosa octotuberculata. Four treatments were employed: (1) successful capture and feeding: one syrphid fly was allowed to be captured and consumed by the spider on the web; (2) single prey-item detection: a syrphid fly was placed on the web to lure the spider, but was removed before capture; (3) five prey-item detection: above prey-item detection stimulus was given five times; and, (4) control: neither prey nor feeding on the web. While control spiders decreased the total thread length and capture area of their webs, prey-item detection spiders in both conditions increased them, indicating that the spider obtained information from unsuccessful predation experience to adjust their foraging investment. The fed spiders exhibited a significantly greater increase than the prey-detection-only spiders, suggesting that prey detection alone and prey detection with consumption had different informational effects. Total thread length did not differ between single and five prey-item detection spiders, but distance between two adjacent sticky spirals increased only in the former spiders, possibly because five times unsuccessful predations prevented spiders to reduce web stickiness. It suggests that the spider changed web morphology according to the number of prey detection.  相似文献   

13.
This study explores whether or not foragers of the Neotropical swarm-founding wasp Polybia occidentalis use nest-based recruitment to direct colony mates to carbohydrate resources. Recruitment allows social insect colonies to rapidly exploit ephemeral resources, an ability especially advantageous to species such as P. occidentalis, which store nectar and prey in their nests. Although recruitment is often defined as being strictly signal mediated, it can also occur via cue-mediated information transfer. Previous studies indicated that P. occidentalis employs local enhancement, a type of cue-mediated recruitment in which the presence of conspecifics at a site attracts foragers. This recruitment is resource-based, and as such, is a blunt recruitment tool, which does not exclude non-colony mates. We therefore investigated whether P. occidentalis also employs a form of nest-based recruitment. A scented sucrose solution was applied directly to the nest. This mimicked a scented carbohydrate resource brought back by employed foragers, but, as foragers were not allowed to return to the nest with the resource, there was no possibility for on-nest recruitment behavior. Foragers were offered two dishes—one containing the test scent and the other an alternate scent. Foragers chose the test scent more often, signifying that its presence in the nest induces naïve foragers to search for it off-nest. P. occidentalis, therefore, employs a form of nest-based recruitment to carbohydrate resources that is mediated by a cue, the presence of a scented resource in the nest.  相似文献   

14.
The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.  相似文献   

15.
All higher eukaryotes have established symbiotic relationships with diverse microorganisms. One of the most well-characterized symbiotic systems is that of termites and their intestinal microorganisms, which digest cellulose. Recently, diverse types of symbioses between gut microbes and host organisms including humans have received growing attention for various features of their complex interactions beyond nutrition. In termites, researchers are beginning to explore such function of gut symbionts, but only the contribution to internal immunity against entomopathogen is known in a few species. Here, we report that gut symbionts of the dampwood termite Zootermopsis nevadensis protect nests from the spread of the commensal bacterium Serratia marcescens, which has pathogenic potential. Defaunated termites dispersed S. marcescens in the surrounding environment by feeding on the bacteria, which then survived passage through their alimentary tracts, while non-defaunated termites did not. Loss of gut symbionts caused a significant reduction in intestinal acetate, which is an important carbon source for termites. Culture experiments showed that acetate had significant inhibitory effects on S. marcescens at a concentration as low as 12 mM, which indicated that the intestinal acetate of non-defaunated termites (40–130 mM) was capable of suppressing this bacterium. These results suggest that digestive derivatives produced by intestinal symbionts play an essential role in nest hygiene in addition to their nutritional function for termites. Our study provides a better understanding of the multifunctionality of symbiotic relationships in diverse organisms beyond nutrition.  相似文献   

16.
Most orb-web spiders face downwards in the web. A downward orientation has been proposed to be the optimal strategy because spiders run faster downwards and thus can catch prey quicker. Consequently, orb-web spiders also extend their web in the lower part, leading to top-down web asymmetry. Since the majority of orb-web spiders face downwards, it has been difficult to test the effect of orientation on prey capture and web asymmetry. In this study, we explored the influence of reverse orientation on foraging efficiency and web asymmetry in Verrucosa arenata, a neotropical orb-web spider that faces upwards in the web. We show that reverse orientation does not imply reverse web asymmetry in this species. V. arenata spiders captured more prey in the lower part of the web but more prey per area on the upper part. The average running speeds of spiders did not differ between upward and downward running, but heavier spiders took longer to capture prey while running upwards. We discuss these findings in the context of foraging efficiency and web asymmetry.  相似文献   

17.
Responses of termite assemblages to the conversion of semi-deciduous forest into teak plantations were studied in the Lama Forest Reserve in Benin, West Africa. Four belt transect surveys were run in each of the two forest types, adopting a modified termite diversity assessment protocol. Termite assemblages were remarkably species-poor in both forest types, with only 19 species encountered altogether. The low species richness was due to the rarity of soil-feeders of the soil/humus interface and the absence of true soil-feeders in the compact vertisol soil. Species richness was significantly higher in semi-deciduous forest than in teak plantations, but termite encounters were significantly lower. Termite assemblage and feeding group structure differed significantly among forest types. Wood-feeders were recorded only in semi-deciduous forest. In contrast, fungus-growers were more species-rich and about four times more abundant in teak plantations, mainly due to one Ancistrotermes species. The humification score, which depicts the position of termite assemblages along a gradient of increasing humification of their food substrate, was significantly higher in teak plantations, due to the absence of wood-feeders and the preponderance of fungus-growers. Combined principal components and multiple regression analysis identified two significant predictors of termite assemblages, soil water content and leaf litter biomass. The abundance of fungus-growers in teak plantations seemed to be mainly related to the high leaf litter biomass. Indirect evidence also suggests that lower predation pressure by ants on termites in teak plantations may have contributed to the abundance of termites.  相似文献   

18.
Here we show for the first time that the presumed facultative slave-making ant Formica subintegra does not activate outside its nest until July and August, when it raids slaves. A comparative behavioral study of seasonal and daily activities, retrieval of prey, and nest maintenance of F. subintegra, the obligate slavemaker Polyergus breviceps, and the facultative Formica subnuda, shows that the behavioral repertory of F. subintegra closely resembles that of P. breviceps and clearly differs from the repertory of F. subnuda. Unlike P. breviceps, F. subintegra has retained some nest-building activity which, owing to lack of competence, does not contribute to nest maintenance. We suggested earlier that F. subintegra is probably an obligate slavemaker, because it always has in its colonies a large proportion of slaves of the total workforce, whereas F. subnuda fares well even without slaves. This, coupled with no foraging in early summer and a raiding period later on, strongly suggests that F. subintegra is an obligate slave-making ant.  相似文献   

19.
Recent studies provide a new challenge to the adequacy of theories concerning the evolution of cooperation among nonrelatives: some individuals perform high-risk activities while others do not. We examined a communal hymenopteran species, Lasioglossum (Chilalictus) hemichalceum, to determine why group members engaged in demonstrably risky activities (foraging) tolerate the selfish behavior (remaining in the nest) of unrelated nestmates. Experimental removal of adult females indicated that their presence is required for the protection of brood from ant predators. Nonforagers ensure the continued presence of adults in the nest if the risk-taking foragers die, thereby safeguarding the survival of forager offspring. This results in an unequal distribution of risky activities within social groups in which avoidance of risky activities by some group members is ultimately beneficial to risk takers. Received: 10 June 1997 / Accepted in revised form: 25 May 1998  相似文献   

20.
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called trawling behaviour. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号