首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以废弃生物质罗非鱼鱼鳞为原料,用 KOH一步炭化活化法制备了鱼鳞基多孔生物炭,并借助 XRD、SEM、FTIR及 Boehm等方法对所制备生物炭的孔隙结构、形貌特征及表面化学性质进行表征 .结果表明:650 ℃条件下制备的生物炭(FSBC-1)表面含有最多的含氧基团,其中酚羟基含量为 0.3102 mmol·g-1,而 850 ℃条件下制备的生物炭(FSBC-3)具备最高的比表面积(3370 m2·g-1)和孔容(1.91 cm3·g-1). 静态吸附实验表明,所制备生物炭对非极性分子甲苯的吸附过程符合 Langmuir模型,而 n-layer BET 模型能更好地描述材料对极性分子丙酮的吸附 .298 K条件下,FSBC-3 对 3 kPa 甲苯的吸附量高达 12.75 mmol·g-1,对 20 kPa 丙酮的吸附量达 16.74 mmol·g-1. 动态吸附实验和机理分析表明,对于低浓度VOCs,所制备生物炭对非极性分子甲苯的穿...  相似文献   

2.
农业废弃物基生物炭对水溶液中镉的吸附效果与机制   总被引:3,自引:2,他引:1  
龚沛云  孙丽娟  宋科  孙雅菲  秦秦  周斌  薛永 《环境科学》2022,43(6):3211-3220
以畜禽粪便(牛粪、鸡粪、猪粪)为原料分别在300℃和700℃下制备生物炭,以作物秸秆(小麦秸秆、水稻秸秆、玉米秸秆)为原料分别在300℃和500℃下制备生物炭,利用比表面积和孔径分析仪、扫描电镜、傅里叶红外光谱仪、X射线衍射仪和CHN分析仪等对农业废弃物基生物炭的理化性质、表面结构和元素组成进行表征,研究生物炭理化性质差异和其对镉吸附效果和机制.结果表明,不同农业废弃物基生物炭对Cd2+的等温吸附符合Langmiur方程,拟合结果发现随着热解温度的升高,牛粪、鸡粪和猪粪基生物炭对Cd2+的最大吸附量分别从83.40、19.65和96.74 mg·g-1增加至106.54、 268.89和164.53 mg·g-1;而不同热解温度下制备的秸秆基生物炭对Cd2+的最大吸附量差异不显著.农业废弃物基生物炭呈碱性,除牛粪生物炭外,灰分含量随热解温度上升而增加.随着热解温度的上升,生物炭孔隙结构变丰富,含氧官能团增加,出现芳香结构.通过定量分析,发现生物炭Cd2+总...  相似文献   

3.
采用水稻秆、大豆秆、小麦秆和玉米秆为原料在550℃缺氧条件下制备生物炭,考察不同原料生物炭理化性质及热解后重金属(Cr﹑Ni、 Cu﹑As﹑Cd和Pb)迁移转化特征,及其在不同浸出液中的浸出行为.结果表明,4种原料制备的生物炭的理化特性和元素组成基本一致,其中玉米秆生物炭微孔体积(0.006 cm3·g-1)和比表面积(110.120 m2·g-1)低于其他原料生物炭.秸秆热解后重金属(除Cd外)含量增加了14.04%~410.81%,且大部分重金属(除Cd和Pb外)化学形态由不稳定态(弱酸提取态和可还原态)向稳定态(可氧化态和残渣态)转化.制备的生物炭中的重金属在超纯水和缓冲盐溶液中无浸出或浸出量较少,在乙酸溶液和腐殖酸溶液中浸出量较高.其中Cu在乙酸溶液中浸出量较高,为2.601~4.224 mg·kg-1,As在腐殖酸溶液中浸出量较高,介于0.074~0.166 mg·kg-1.热解后,各种重金属的环境质量指数(PIi)和内梅罗...  相似文献   

4.
以农业废弃物花生壳为原料,在氯化镁、活性氧化镁水溶液中经陈化、热解得到纤维氧化镁改性生物炭(FMgO-BC).同时,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、比表面积分析(BET)等手段对FMgO-BC的组成、形貌进行了表征,并探索了FMgO-BC对磷废水的吸附动力学、颗粒内扩散、等温吸附及竞争吸附.结果表明,制备的FMgO-BC呈多孔结构且纤维状氧化镁交织嵌在生物炭表面,提供了大量的活性位点,同时,FMgO-BC呈规则、分层的孔隙结构,有利于吸附质的传输.在废水pH为3~10范围内,FMgO-BC对废水中磷酸盐具有较高的吸附能力.吸附动力学研究表明,FMgO-BC对磷酸盐的吸附复合准二级动力学模型,对于100 mg·L-1的含磷废水在1 h即可达到吸附平衡.等温吸附拟合得到FMgO-BC的理论最大吸附量为625.63 mg·g-1.FMgO-BC的磷吸附机理主要包括MgO质子化、静电吸附、络合等方式.因此,纤维氧化镁修饰生物炭能够显著提升生物炭对于废水中磷的吸附能力与速率.  相似文献   

5.
窄孔径含磷棉秆生物质炭的制备及对四环素的吸附机制   总被引:1,自引:0,他引:1  
曾少毅  李坤权 《环境科学》2023,44(3):1519-1527
以棉秆为生物质原料,磷酸为改性剂,一步碳化制备了兼具高比表面积(1 916 m2·g-1)和孔体积(1.398 2 mL·g-1)的窄孔径含磷棉秆生物质炭(CSP),并研究了其对四环素(TC)的吸附行为.结果表明,磷酸改性制备的窄孔径含磷棉秆生物质炭对TC吸附量高达669mg·g-1,是未改性棉秆炭的43.6倍;红外光谱(FTIR)、 X射线(XPS)和等温吸附研究表明,CSP对TC的高吸附量是表面络合、氢键、孔隙填充和π-π色散等多种吸附力共同作用的结果,其中磷酸改性赋予的高活性磷酸酯类基团(P—O—C)与TC分子间的化学络合作用强且贡献度高,是吸附量显著提升的最关键因素.静态等温吸附与热力学研究结果进一步证实TC在含磷棉秆炭吸附过程中化学吸附起主要作用,吸附过程属于自发的吸热过程.研究结果可为利用棉秆资源定向制备高效吸附TC的高活性磷掺杂生物质炭提供了一种潜在的简便高效途径.  相似文献   

6.
酸/碱改性香蒲生物炭对水中磷的去除及其机制研究   总被引:1,自引:0,他引:1  
雨水径流中存在的磷污染问题严重威胁生态环境,而传统的雨水径流处理设施,如雨水花园、渗滤沟等,对磷的去除率较低且成本较高.以湿地中收割的香蒲为原材料,酸改性后制备的生物炭(TH7)的除磷效果非常好,明显优于碱改性生物炭(TOH7):与原生物炭(T7)相比,酸改性生物炭大大提高了磷的去除效率,可从T7的65%提高至94%,而碱改性生物炭无除磷效果.TH7的表面孔隙发达,比表面积高达434.2m2·g-1,对磷的吸附符合Freundlich模型和伪二级动力学模型,其吸附属于物理化学吸附,具体的机制为孔隙填充、表面化学沉淀、氢键结合.研究表明,以香蒲为原料制备的改性生物炭是一种效果优越的除磷吸附剂,可应用于植草沟、雨水花园等以填料为主要吸附层的径流处理设施中.  相似文献   

7.
水稻秸秆生物炭对磺胺类抗生素的吸附研究   总被引:2,自引:0,他引:2  
研究了3种热解温度分别为300℃(S300)、450℃(S450)、600℃(S600)的水稻秸秆生物炭对两种磺胺类抗生素的吸附性能及机制,同时考察了溶液p H值及离子强度对吸附的影响。结果表明,生物炭对磺胺二甲基嘧啶(SM_2)和磺胺甲恶唑(SMX)的吸附均符合准二级动力学方程;等温吸附曲线用Langmuir方程拟合优于Freundlich方程,3种生物炭的最大吸附量随热解温度的升高而升高,且对SM_2的吸附能力优于SMX,600℃热解的秸秆炭对SM_2和SMX的最大吸附量分别可达到2 857.1 mg/kg和1 724.1 mg/kg。溶液p H显著影响吸附,SM2和SMX的吸附以中性形态为主,p H在3~11的范围内,SM_2和SMX的最佳p H分别为5和3。生物炭对2种抗生素的吸附能力随离子强度的升高而轻微下降。红外光谱分析表明,氢键结合、π-π共轭是秸秆生物炭吸附2种磺胺抗生素的主要机理。  相似文献   

8.
剩余污泥富含有机物,同时也含有重金属和病原体等有害物质.以水铝钙石和剩余污泥为原料,通过共混凝和共热解技术制备生物炭以降低污泥中重金属溶出风险,并对其磷酸盐吸附性能开展研究.结果表明,污泥生物炭中的Zn、Cu、Cd和Ni浸出量随水铝钙石投加量的增加而减少.水铝钙石与剩余污泥质量比为1∶1时,共热解制备得到的富含钙/铝污泥生物炭复合材料(1∶1HB800)重金属浸出风险最低,并对磷酸盐表现出较高的吸附能力,其过程可用Langmuir吸附等温线(R2=0.93)拟合,在25℃条件下对磷的最大吸附容量为51.38 mg·g-1.1∶1HB800对高浓度磷的吸附过程符合拟二阶动力学模型,吸附速率由表面吸附和颗粒内扩散共同控制.相较于中性溶液,1∶1HB800对酸性和碱性水溶液中的磷酸盐具有更好的去除效果,这与1∶1HB800中钙/铝在不同pH条件下的浸出量及铝元素的存在形式有关.FTIR、XRD、SEM、零点电位和钙/铝离子的浸出实验分析结果表明,1∶1HB800对磷的吸附机制主要是共沉淀(Ca2+/Al3+  相似文献   

9.
针对低浓度含氟水难处理,氟超标排放造成水污染等问题,制备了铝锆改性生物炭(AZBC),研究其对水体低浓度氟离子(F-)的吸附特性及吸附机制.结果表明,AZBC是具有均匀孔隙结构的介孔生物炭,能够快速吸附水体F-,可在20 min内达到吸附平衡.当初始ρ(F-)为10mg·L-1,AZBC投加量为30 g·L-1时,F-去除率为90.7%,出水浓度低于1mg·L-1.AZBC的pHpzc为8.9,推荐pH使用范围为3.2~8.9.其吸附动力学符合拟二级动力学,吸附过程符合Langmuir模型,在25、 35和45℃下的最大吸附量分别为8.91、 11.40和13.76mg·g-1.可用1mol·L-1 NaOH脱附F-,5次循环使用后,AZBC的吸附量下降约15.9%. AZBC的吸附机制为静电吸附和离子交换共同作用.以某工业园区污水厂污水为实验对象...  相似文献   

10.
通过固定床石英管热解装置将稻壳、木薯秸秆及玉米秸秆在350、450、500、550、600℃进行充分热解制备生物炭,利用图像识别技术获得生物炭的RGB值(红、绿、蓝三个通道的颜色)及相应的灰度值,研究了生物炭灰度值与其水溶液中的pH值及阳离子(NH4+-N及K+-K)吸附性能的关系.结果表明:3种生物炭的pH值随着灰度值的增加呈现“S”型增长趋势,并符合DoseResp模型,回归方程的决定系数(R2)分别为0.9766、0.9592和0.9219,残差平方和(RSS)均小于0.01;除玉米秸秆炭的K+-K吸附量与灰度值的关系为线性负相关外,3种生物炭的NH4+-N和K+-K吸附量与灰度值之间满足一元高次非线性模型,R2范围在0.8595~0.9999.本研究为快速预测生物炭在水溶液中的pH值和阳离子吸附性能提供了理论基础.  相似文献   

11.
改性多孔生物炭的制备及其对水中四环素的吸附性能研究   总被引:4,自引:0,他引:4  
杨奇亮  吴平霄 《环境科学学报》2019,39(12):3973-3984
以常见的农业废弃物玉米秸秆为原料,以NaHCO_3和三聚氰胺为活化剂,一步碳化活化制备得到了一种改性多孔生物炭,研究了其对模拟四环素(TC)废水的吸附行为,同时采用SEM、XRD、Raman、FTIR、BET和元素分析对材料进行表征分析.探究了热解温度、三聚氰胺添加量、吸附剂投加量、反应时间、初始浓度、环境温度和pH对改性多孔生物炭去除水溶液中TC的影响.相比于原始生物炭(C800),改性后的秸秆生物炭(MPC800-10)对TC拥有更优异的吸附能力,能在短时间内快速高效地去除TC.由表征结果可知,同时添加NaHCO_3和三聚氰胺得到的改性多孔生物炭(MPC800-10)相对于原始生物炭(C800)比表面积更大,孔结构更丰富,芳香性增强,且亲水性和极性也有所增大,表面官能团更丰富,含氧官能团增加.MPC800-10对TC的吸附更符合Pseudo-second-order动力学模型和Freundlich等温吸附模型,且最大吸附量达到347 mg·g~(-1).热力学分析表明MPC800-10对TC的吸附是一个自发、吸热的过程.在酸性和中性条件下MPC800-10对TC都有较好的吸附能力,且具有一定的抗离子干扰能力和良好的再生性能.本研究将为农田废弃物的资源化利用及废水中抗生素的污染治理奠定坚实的基础.  相似文献   

12.
季铵化改性稻草吸附去除水中SO42-的特性研究   总被引:1,自引:1,他引:0  
曹威  党志 《环境科学学报》2013,33(9):2466-2472
采用NaOH、环氧氯丙烷和三甲胺改性稻草秸秆,制备出含季铵基的吸附剂,用以去除水中的硫酸根离子(SO2-4).通过SEM、元素分析、13C-NMR表征发现,稻草改性后表面纤维结构暴露,含氮量增加,引入了大量的季铵基,吸附潜力显著提高.吸附实验结果表明,改性稻草吸附去除SO42-平衡时间约20min,pH为3~8范围内吸附效果较好.采用Langmuir吸附模型可较好地描述改性稻草对SO2-4的吸附等温线,其最大单分子层吸附量Qmax为74.76mg·g-1,吸附能力远大于原稻草(11.68mg·g-1).  相似文献   

13.
紫外辐照改性生物炭对VOCs的动态吸附   总被引:2,自引:1,他引:1  
李桥  雍毅  丁文川  侯江  高屿涛  曾晓岚 《环境科学》2016,37(6):2065-2072
采用365 nm紫外光辐照改性椰壳生物炭,以提升对挥发性有机污染物(VOCs)的吸附性能.选取苯和甲苯两种典型的VOCs为吸附质,考察了改性前后生物炭的吸附穿透曲线.结果表明,紫外辐照改性后的生物炭其吸附性能显著增加,对苯和甲苯的饱和吸附量分别由7.27 mg·g~(-1)和7.98 mg·g~(-1)提升至122.80 mg·g~(-1)和236.36 mg·g~(-1),吸附穿透时间也由1 min和2 min大大延长至390 min和620 min.生物炭表面理化特征分析表明,紫外辐照增大了生物炭表面含氧官能团的含量和外比表面积,这可能是改性生物炭吸附性能提升的关键因素.Yoon-Nelson、Thomas和BDST模型均能很好地模拟改性生物炭对不同浓度苯和甲苯的吸附过程,其相关系数大于0.992.热重分析结果表明,紫外辐射对生物炭的热稳定性影响甚微.改性生物炭吸附饱和后,可经热再生后重复利用,对甲苯的吸附重复利用5次后仍有较高的吸附能力.  相似文献   

14.
载氧化镁水生植物生物炭的特性表征及对水中磷的吸附   总被引:4,自引:0,他引:4  
为去除富营养化水体中的磷并实现水生植物的资源化利用,以水生植物芦苇和互花米草为原材料,通过MgCl_2改性制备了不同Mg~(2+)和植物配比的共12种生物炭,考察对水体中磷的吸附能力及镁改性前后生物炭特性的差异.结果表明,当Mg~(2+)与芦苇、Mg~(2+)与互花米草的质量比为0.48、0.36时,制得的两种生物炭对20 mg·L~(-1)磷的吸附能力最强,分别为8.52 mg·g~(-1)和9.21 mg·g~(-1),是未改性时的79倍和66倍;对溶液中20mg·L~(-1)磷的去除率分别达到85.2%和92.1%.改性后芦苇和互花米草生物炭C、H、N含量减少,Mg含量分别增加到22.77%和23.46%.芦苇生物炭改性后比表面积减小了118.71 m~2·g~(-1),互花米草生物炭增加了22.59 m2·g~(-1);二者孔容和平均孔径均有所增加.改性前后生物炭的表面官能团种类相同.XRD测试指出MgO为改性生物炭的复合纳米颗粒中最主要的晶相;SEM展现了布满MgO的改性生物炭表面及孔道.机理分析表明,MgO是生物炭吸附磷的关键.  相似文献   

15.
木屑生物炭在雨水径流中的氮磷淋出和吸附特性   总被引:2,自引:1,他引:1  
孟依柯  王媛  汪传跃 《环境科学》2021,42(9):4332-4340
现阶段生物滞留系统的填料存在氮磷营养素淋出及吸附净化效果不稳定的问题.为评估木屑生物炭作为生物滞留系统过滤层填料的可行性,选用传统填料(椰糠、堆肥、陶粒和火山石)作为对比材料,通过理化性质测试、批量淋洗实验、等温吸附和解吸实验,研究木屑生物炭的基本性质、淋出特性和吸附特性,探究木屑生物炭对生物滞留系统的优化效果与改良机制.结果表明,经高温热解生成的木屑生物炭具有疏松和多孔的特性,饱和含水率为195.65%,持水效果好;热解后木屑生物炭表面的氮磷元素转换为稳定的化合物,在批量淋洗实验中其氮素淋出量低、淋出速度快,磷素淋出滞缓但在人造雨水径流的淋洗中保持线型负值增长,吸附效果稳定;在典型雨水径流浓度(2mg·L-1的NH4+及2mg·L-1的PO43-)下,木屑生物炭可吸附34.6mg·kg-1的NH4+和59.5mg·kg-1的PO43-,具有突出的综合吸附能力;NH4+及PO43-吸附平衡后的木屑生物炭在去离子水中的平均解吸率为21.23%和17.43%,吸附效果稳定.综上所述,木屑生物炭的施用可解决填料营养盐过剩淋出的问题,且具有较好的氮磷吸附效果,可用作生物滞留系统的填料解决雨水径流污染问题.  相似文献   

16.
利用共沉淀和水热法于生物炭(BC250、BC350、BC450、BC550和BC650)负载CuFeO2,得到的复合材料对水中四环素(TC)具有较好的去除效果.CuFeO2与BC450质量比为2 :1的CuFeO2改性生物炭(CuFeO2/BC450=2 :1)对TC的吸附性能最强.TC于CuFeO2/BC450=2 :1的吸附符合颗粒内扩散模型,表明吸附是界面和孔隙扩散控制的过程.在中性pH、298 K下,CuFeO2/BC450=2 :1对TC的Langmuir最大吸附量为82.8 mg ·g-1,远大于BC450的13.7 mg ·g-1和CuFeO2的14.8 mg ·g-1.热力学结果表明,CuFeO2/BC450=2 :1对TC的吸附是自发和吸热过程.随pH增加,CuFeO2/BC450=2 :1对TC的吸附去除呈先增加后降低的趋势,中性条件时效果最佳.CuFeO2/BC450=2 :1对TC的强吸附得益于CuFeO2负载对材料孔隙结构的改善、比表面积的增大和表面官能团、电荷属性的改变.研究结果为净化抗生素污染提供了一种高效的磁性吸附剂.  相似文献   

17.
添加生物炭对西北黄土吸附克百威的影响   总被引:4,自引:1,他引:3  
研究了不同温度下制得的生物炭对西北黄土吸附农药克百威的影响,并对溶液p H值和初始浓度对吸附的影响进行了探讨.结果表明,克百威在添加生物炭黄土上的动力学吸附过程较好地符合准二级吸附动力学模型;热力学吸附较好地符合Freundlich等温吸附模型;随着系统温度的升高,添加生物炭的黄土对克百威的吸附量增大,且其对克百威的吸附自由能变(ΔGθ)小于0,吸附焓变(ΔHθ)及吸附熵变(ΔSθ)均大于0,表明吸附是一个自发吸热且体系混乱程度增大的等温吸附过程.溶液p H值和克百威的初始浓度对添加生物炭的土样吸附影响较明显.当p H值为4~7时,添加生物炭的土样饱和吸附量随p H升高呈缓慢降低,当p H值大于7时,吸附容量随p H升高呈明显降低趋势.克百威初始浓度从20 mg·L-1增至50 mg·L-1的过程中,吸附量快速上升,初始浓度大于50 mg·L-1时,吸附量随初始浓度的升高而缓慢增加并逐渐趋于平衡.  相似文献   

18.
改性污泥基生物炭的性质与重金属吸附效果   总被引:8,自引:4,他引:4  
为提高污泥基生物炭在高钙溶液体系中对重金属阳离子的吸附能力,将Fe2O3、MnO2、ZnO与市政污泥以质量比1 ∶10(以过渡金属元素质量计)混合共热解,制备改性生物炭;表征改性生物炭的组成、官能团分布和表面性质,考察其对典型重金属阳离子Cd2+的吸附效果.过渡金属氧化物可促进污泥的热解,改性生物炭的H/C原子比均低于0.31,碳链裂解脱氢更彻底.改性生物炭中Fe、Mn保留较好,分别主要以单质和氧化物形态存在;而Zn流失较多.改性生物炭中的孔隙以介孔为主,平均孔径约3.8 nm,比表面积在50 m2·g-1以上.初始浓度约200 mg·L-1的Cd2+溶液中,Ca2+初始浓度从0 mg·L-1升高到约200 mg·L-1,Fe改性生物炭对Cd2+的吸附容量从43.17 mg·g-1降至27.88 mg·g-1,但仍较未改性生物炭高10 mg·g-1以上,在含钙溶液体系中表现出了对Cd2+更强的吸附性能.Fe2O3较MnO2和ZnO对市政污泥基生物炭吸附重金属的强化效果更好.  相似文献   

19.
硅改性花生壳生物炭对水中磷的吸附特性   总被引:3,自引:3,他引:0  
赵敏  张小平  王梁嵘 《环境科学》2021,42(11):5433-5439
为实现花生壳资源化利用,通过硅酸钠溶液对花生壳进行浸渍改性,再热解制备成硅改性花生壳生物炭(Si-PSBs),探究Si-PSBs对水中磷的吸附特性.结果表明,相比于未改性花生壳生物炭(PSB),Si-PSBs对磷的吸附量明显增大,8%硅酸钠溶液改性的生物炭(8% Si-PSB)对磷的吸附量是改性前的3.9倍.SEM、FTIR和XRD等结果表明8% Si-PSB上有二氧化硅生成,二氧化硅影响吸附过程中源于生物炭的碳酸钙形态,提高了生物炭自身所含金属离子Ca2+的反应活性.强酸强碱环境中,8% Si-PSB对磷均具有良好的吸附效果.反应平衡后,8% Si-PSB和PSB对磷的吸附量分别在2.79 mg ·g-1和0.71 mg ·g-1上下浮动,对磷的吸附均更符合准二级动力学模型,说明反应以化学吸附为主.等温吸附实验数据采用Langmuir模型拟合度更高,说明8% Si-PSB和PSB对磷的吸附均以单层吸附为主.溶液中腐殖酸(HA)的存在抑制8% Si-PSB和PSB对磷的吸附.8% Si-PSB是一种低成本的新型除磷材料,可提高花生壳自身金属钙离子的利用程度.  相似文献   

20.
3种吸附剂对污水磷污染去除性能与机制比较   总被引:5,自引:3,他引:2  
吴露  刘锋  龙睿  罗沛  肖润林  陈向  吴金水 《环境科学》2019,40(2):677-684
为探索高效利用膨润土、红壤和炉渣去除农业污水磷污染的可行性,对比分析了3种吸附剂对人工合成含磷污水的吸附去除特性,结合SEM、XDS和BET等测试结果以及等温吸附、吸附动力学及Ca2+释放量探讨了3种材料对磷的吸附机制.结果表明,炉渣对磷的吸附能力高于膨润土和红壤,吸附过程均适合Langmuir等温吸附方程(R2 0. 96),对磷的理论饱和吸附量为:炉渣(16. 87 mg·g~(-1))红壤(1. 21 mg·g~(-1))膨润土(0. 92 mg·g~(-1)).炉渣对磷的吸附动力学特征符合Elovich方程(R2=0. 966),而膨润土和红壤对磷的吸附特征则更适合准二级动力学方程(R2为0. 982和0. 959).炉渣的Ca2+释放量(10. 46 mg·g~(-1))显著大于膨润土(0. 31 mg·g~(-1))和红壤(0. 03 mg·g~(-1))(P 0. 05).红壤对磷的吸附量随着p H的升高而降低;膨润土在初始p H为7. 0时,吸附量最低;但初始p H值对炉渣去除磷的影响不大.相比红壤和炉渣,膨润土解吸较快,易于进行重复利用.综上所述,吸附材料的磷吸附能力主要与其结构、化学组成、Ca2+释放能力及溶液初始p H值等有关,炉渣较膨润土和红壤对磷酸盐有着更强的去除能力,适合处理农村污水磷污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号