首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMBBR工艺处理城市污水   总被引:1,自引:0,他引:1  
袁辉洲  邹原  张鹏  朱佳 《环境工程》2012,30(1):30-34,82
通过对厌氧移动床生物膜反应器处理南方热带亚热带地区城市生活污水的试验研究,采用好氧-厌氧两个阶段进行挂膜试验以缩短挂膜时间,探讨了水力停留时间(HRT)、pH值、填料填充率对反应器处理效果的影响。试验结果表明:在HRT为12 h,进水ρ(COD)为300 mg/L,ρ(氨氮)为15 mg/L,50%的填料填充率,pH=7的工艺条件下,装置对COD去除率为51.2%,对氨氮去除率为40.8%,对TN去除率为38.1%。  相似文献   

2.
采用铁碳微电解/Fenton试剂组合工艺对炼油碱渣废水混凝沉淀处理后出水,进行降解研究。实验结果表明:pH值为3,废水与铁碳填料的体积比为2∶1,微电解反应时间2 h,曝气的条件下,废水的处理效果最好,COD的去除率超过42.5%。Fenton试剂处理微电解反应出水的最佳操作条件是:pH值在2~3之间、反应时间2.5 h、Fe2+浓度为800 mg/L左右、H2O2浓度为0.25 mol/L,在此条件下,Fenton试剂处理微电解处理后的炼油碱渣废水COD平均去除率为63.8%以上,微电解/Fenton工艺对COD的总去除率在79.2%左右,可生化性由0.16提高到0.56。  相似文献   

3.
以多孔结构的多元合金为填料,采用微电解耦合催化氧化深度处理制药废水。研究了废水初始pH、微电解时间、填充率、H2O2投加量、催化氧化时间等对废水COD去除效果的影响。试验最佳工艺为:充氧曝气条件下,初始pH 2.5,微电解90 min,填充率1∶1,H2O2投加量2‰,催化氧化120 min,COD的平均去除率为52.25%,出水COD平均质量浓度为276 mg/L。  相似文献   

4.
采用Fe/C微电解-Fenton氧化联合工艺处理某固体废弃物处理企业填埋区的垃圾渗滤液,以降低其COD与浊度值,并去除渗滤液中的重金属离子。结果表明:当pH=4~5,铁炭复合材料投加量为30~40 g/L,曝气量为40 L/min,水力停留时间(HRT)为1 h时,微电解方法对垃圾渗滤液中的Ni2+、Cr(Ⅵ)、Pb2+的去除效果较好,其去除率分别达到 96%、97%和96%,垃圾渗滤液色度去除率为92.41%,COD去除率为62.33%,浊度由40.73NTU降至3.09 NTU,COD由579.2 mg/L降至218.16 mg/L。对微电解工艺出水进一步采用Fenton氧化工艺处理,结果表明:当Fe2+浓度为0.007 mol/L,氧化时间为90 min,n(H2O2):n(Fe2+)=1.2:1条件下,COD去除率为67.50%,浊度为53.20%,处理后的出水浊度为1.47 NTU、COD为69.49 mg/L,达到GB 18918-2002《城镇污水处理厂污染物排放标准》的二级排放标准。  相似文献   

5.
针对廊坊市安次区龙河东张务闸处河流微污染问题,构建了沸石生物滤池与海绵铁/石灰石滤池联合处理工艺,考察了联合工艺对COD和TP的去除效果及运行参数。结果表明:海绵铁/石灰石滤池采用均质填充,海绵铁/石灰石体积比为3∶7。联合工艺在COD为72±11 mg/L、TP为1.52±0.53 mg/L、HRT为1.5 h的条件下,COD、TP平均去除率分别为76.51%和85.37%;在常态水质条件(COD 56±10 mg/L、TP 0.65±0.14 mg/L)下,控制HRT为0.8 h时,COD、TP平均去除率分别为89.33%和74.27%,出水COD、TP浓度满足地表水Ⅳ类水标准。  相似文献   

6.
采用混合型(火山岩和陶瓷环)填料生物接触氧化工艺处理实际生活污水,研究了混合型填料挂膜情况,不同HRT、DO和进水COD浓度对水质净化效果的影响。实验结果表明:混合型填料挂膜效果好,15 d后反应器达到稳定状态,对COD的去除率达到75%以上;在水温为20~32℃,HRT为12 h,DO为5~6 mg/L的条件下,对COD、氨氮、TN和TP的平均去除率分别达到了75.8%、71.8%、45.9%和35.7%;当进水COD浓度为100~400 mg/L时,各个指标的去除率随着COD浓度的升高而升高,可见进水COD浓度会对污水净化效果产生影响。  相似文献   

7.
通过移动床生物膜反应器处理低C/N比生活污水的试验研究,探讨了填料填充率、曝气量和水力停留时间对处理效果的影响,确定出了适合反应器的填充率为53%,最佳曝气量为0.07L/h,最佳水力停留时间为8h。在该实验条件下,COD平均去除率在85%左右,TN去除率最高为62%,平均生物浓度2.63mg/L,生物膜活性强,结果表明反应器对低C/N比生活污水有较好的处理效果。  相似文献   

8.
针对传统微电解工艺存在的填料板结问题,烧制了一种新型微电解材料——Fe0/C/Clay陶粒,并将其应用于亚甲基蓝模拟废水的处理。单因素试验筛选的最佳试验参数为:亚甲基蓝浓度为1 000 mg/L,pH=5,A/L=1.5,HRT=4 h,此时色度去除率和COD去除率分别为90%和58%。紫外可见光谱扫描分析表明:可见光区的吸收明显减少。连续运行试验发现,出水水质稳定时间较长,运行中陶粒填料没有发生板结。  相似文献   

9.
内电解-Fenton 氧化-膜生物反应器处理腈纶废水   总被引:7,自引:0,他引:7       下载免费PDF全文
采用内电解-Fenton 氧化-序批式膜生物反应器组合工艺处理腈纶废水.结果表明,在进水Ph 值为3、内电解反应时间2h、H2O2 浓度1500 mg/L、Fe2+浓度600mg/L、Fenton 反应时间2h 的条件下,内电解-Fenton 组合工艺对COD 的去除率为72%,进水COD 从1328mg/L下降到369mg/L,废水BOD5/COD 从0.14 上升到0.33,CN-从8.6mg/L 下降到0.215mg/L,提高了废水可生化性,为后续的生物处理创造了良好的条件.出水采用序批式膜生物反应器处理,在停留时间20h、缺氧搅拌90min、好氧120min 条件下,COD 去除率为80%,NH4+-N 去除率95%,BOD5 去除率92.6%,CN-去除率90.7%.最终出水COD、BOD5、NH4+-N、CN-、SS 分别为61,9.3,2.55,0.02,13mg/L  相似文献   

10.
研究了不同条件下多元微电解预处理梭织布印染废水的降解效果。试验结果表明:采用多元微电解预处理工艺,在p H=3.0,微电解填料填充比为1:1.5,微电解时间1.5 h的情况下,出水COD平均去除率达到76.0%,是预处理该类废水的有效方法。  相似文献   

11.
实验采用厌氧膨胀颗粒污泥床(EGSB)反应器先后对模拟发酵废水和实际发酵废水进行处理。考察了配水阶段硫酸盐负荷(SLR)对EGSB反应器净化效能的影响,并对实际发酵废水的处理效果进行了研究。实验结果表明:控温条件下((35±1)℃)、进水COD约为2 200 mg/L、水力停留时间(HRT)15 h时,COD去除率可达92%。随着SLR增加,COD去除率降低,当SLR为1.3 kg SO42-/(m3·d)时,反应器出现酸化。为保证反应器的稳定运行,延长HRT至24 h后,COD、SO42-去除率可分别达到90%、82%左右。同样条件下,EGSB处理实际发酵废水,COD、SO42-去除率分别为75%、60%。配水和原水阶段硫酸盐还原菌所能达到的最高电子流比重分别为21.1%、17.5%,对应的最低COD/SO42-为3.0,此时整个反应系统竞争最为激烈,但产甲烷菌仍保持较高竞争性。  相似文献   

12.
研究了化学絮凝法和微电解法预处理酯化废水的工艺条件。首先考察了原水p H值、絮凝剂投加量及絮凝剂与阳离子聚丙烯酰胺复配对化学絮凝效果的影响;然后考察了p H、停留时间、填料量、曝气时间对微电解效果的影响。试验结果表明:化学絮凝在原水p H值为7.5、PFS+CPAM(360 mg/L+60 mg/L)时对酯化废水处理效果最好,COD去除率为17.23%;微电解法在最佳工艺条件(p H为2,反应时间为2 h,填料量为30%,曝气时间为5 min)下对酯化废水COD去除率达到30%以上,且在不调酸不曝气的情况下也可获得良好处理效果,COD去除率达20%以上,故酯化废水的预处理中采用微电解法。  相似文献   

13.
实验采用厌氧膨胀颗粒污泥床(EGSB)反应器与好氧膜生物反应器(MBR)组合工艺对糖蜜发酵废水进行处理.重点考察了组合工艺对发酵废水的处理效能,包括甲烷的产生效率、污染物(COD、NH4+-N和TN)的去除效能.实验结果表明:控温条件下[(35±1)℃]、进水COD约为2250mg/L、pH在为6.0左右时,EGSB对发酵废水的COD去除率可达75.6%,甲烷的容积产气速率为0.48m3/(m3·d).MBR在溶解氧(DO)为1~2mg/L左右时,采用曝气-搅拌交替运行方式处理EGSB出水,可以实现同步硝化反硝化,并且在曝气3h-搅拌1h交替运行条件下,NH4+-N、TN去除率分别为85.13%、58.57%,而最终COD去除率达到85%.  相似文献   

14.
复合式厌氧反应器处理城市污水试验研究   总被引:7,自引:1,他引:7  
采用弹性立体填料的复合式厌氧反应器处理城市污水。研究结果表明 ,该装置处理城市污水效果显著 ,当进水COD在 87~32 0mg L范围内 (平均 2 2 7mg L)变化 ,水力停留时间大于 5 .2h ,反应系统的容积负荷小于 0 .86KgCOD m3.d时 ,常温下COD去除率大于60 % ,出水COD平均为 81mg L ,SS去除率大于 77.8% ,出水SS小于 30mg L ;反应系统在试验条件下温度与溶解性COD去除率成正相关。试验还得出了系统处理城市污水溶解性BOD5去除率随HRT变化的降解动力学模式。  相似文献   

15.
利用厌氧反应器与好氧MBR组合工艺处理印染废水,探讨了水力停留时间(HRT)对其处理效果的影响.结果表明,在溶解氧(DO)浓度为1.8~2.6mg/L的条件下,HRT为7.5、4.5和2.5h时,反应器对COD的去除效率分别为88.7%~96.5%、87.3%~97.2%和81%~92%,出水COD的浓度分别为78.9~51.2,81.6~50.8,93.4~65.8mg/L.试验同时考察了不同HRT条件下,活性污泥浓度(MLSS)对COD去除率的影响.结果表明,在试验条件下,本工艺中一体化膜生物反应器中最佳污泥浓度应控制在6500mg/左右.  相似文献   

16.
采用微电解+厌氧折流板反应器(ABR)+上流式厌氧污泥床(UASB)+膜生物反应器(MBR)组合工艺对纤维乙醇黑液进行处理。结果表明:当黑液中COD质量浓度在12000mg/L左右,该组合工艺中厌氧停留时间(HRT)为48h时,厌氧COD去除率达到72%,MBR中的HRT为20h时,COD的去除率在80.8%~87.5%之间,出水COD质量浓度稳定在301~537mg/L.且MBR抗冲击负荷能力较强。  相似文献   

17.
生物修复微污染水源除有机物研究   总被引:3,自引:0,他引:3  
采用弹性填料微孔曝气生物接触氧化工艺修复受污染的某水源原水,进行去除有机污染物的研究.结果表明,在夏秋季水温23~28℃的条件下,当污染水源CODMn为6~11 mg/L、色度为30~40和生物修复工艺运行参数HRT为1.2 h、气:水(g/w)为0.5:1、DO为7~9 mg/L时,CODMn去除率为22%~36%;在冬季低水温10~16℃的条件下,当污染水源CODMn为6~10 mg/L、色度为32~35度和生物修复工艺运行参数HRT为1.2 h、g/w为0.5:1、DO为8~10 mg/L时,CODMn去除率为10%~23%.  相似文献   

18.
城市污水水解-厌氧-微氧联合处理工艺   总被引:6,自引:0,他引:6  
采用水解 -厌氧 -微氧联合处理工艺处理城市污水的研究结果表明 :在总 HRT不超过 8.5h(水解 2.5h、厌氧 4.0h、微氧2.0 h) ,平均温度为 19℃ ,进水COD浓度为300±50 mg/L时 ,总 COD和 SS的去除率分别可达75%和80%以上 .总出水COD、BOD、SS完全达到国家二级排放标准 .微氧单元对厌氧出水中残余有机物去除效果良好 ,HRT不超过 2h,DO控制在 0.2 mg/L~0.5mg/L左右 ,进水为150mg/L时 ,去除率可达 53%以上 .微氧污泥沉降性能良好 ,SVI=38.8ml/g.水解 -厌氧 -微氧工艺在突出低能耗的前提下 ,达到了较高的有机物去除率 ,与现有的城市污水处理工艺相比有一定的优越性 .  相似文献   

19.
张安龙  曹萌 《环境工程》2011,29(1):15-18
通过小试规模的移动床生物膜反应器(MBBR)处理陕西科技大学污水处理厂生活污水的实验研究,探讨了水力停留时间、冲击负荷、pH对反应器处理效果的影响。实验结果表明,在HRT为10 h,进水ρ(COD)为300 mg/L,ρ(NH3-N)为35 mg/L,填料体积填充率为35%,pH为7左右时,MBBR反应器对COD、TN的去除率分别为87.38%、68%。  相似文献   

20.
秦树林 《环境科学与技术》2013,(Z1):177-179,222
研究了不同条件下破乳絮凝沉淀与多元氧化预处理高浓度切削废液的降解效果。试验表明:采用破乳絮凝沉淀预处理,COD去除率为66.43%,采用破乳絮凝沉淀-多元微电解-催化氧化联合预处理工艺,在CaCl2投加量1 200 mg/L,微电解最佳pH 3.0,填充比1∶1,微电解2 h,催化氧化2 h,H2O2投加量2‰,出水COD平均去除率达到91.55%,是预处理该类废水的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号