首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
杨卫华 《交通环保》2003,24(6):9-11
利用GIS技术建立区域噪声信息管理,能动态、直观地反映区域噪声的时空分布规律,为区域噪声控制研究提供强有力的工具。研究以MapInfo为主要的GIS开发工具,通过属性数据和空间数据的链接,实现了区域噪声分布的地图化表现、动态查询、基本空间分析等功能。利用该系统,可以对某市重点工业区区域噪声的空间分布规律进行GIS实例分析。  相似文献   

2.
北京市2017年典型日机动车动态排放特征研究   总被引:1,自引:1,他引:0  
为深入了解北京市路网机动车排放特征,采用自主开发的基于交通流的机动车动态排放模型,耦合北京市2017年交通流观测数据,测算了北京市机动车在工作日、非工作日、节假日、重污染日和重大活动日5种典型日工况下,主要路网上1 h时间分辨率、1 km×1 km空间分辨率下的时空分布特征.结果表明:①北京市二环路及以内区域和二三环之间(包括三环路)机动车排放强度较高,分别达到0.050和0.043 t/(km2·d).②北京市机动车NOx排放分布规律性较强,主要分布在东南六环路方向及其联络线,以及东北、西北六环路方向及其联络线上,NOx排放高峰值在05:00出现.③北京市机动车CO排放主要集中在城区五环路及以内区域,CO排放高峰值在18:00出现,五环路及以内区域及其联络线附近均为CO高排放区.④北京市5种典型日中,非工作日机动车排放量最大.研究显示,五环路及以内区域机动车污染控制应以轻型车为主,六环路及以外区域应以重型柴油车为主.   相似文献   

3.
北京市机动车污染分担率的研究   总被引:34,自引:3,他引:31  
研究建立了以GIS为平台的北京市机动车排放清单,获得了北京市规划市区内分车型以及分区域的机动车排放分担率.在此基础上,采用修正的ISCST3模型模拟了1995年规划市区CO和NOx浓度的时空分布情况,并分析了机动车排放对北京市大气浓度的贡献率.结果表明,1995年北京市规划市区CO和NOx的年排放分担率分别达到了76.8%和40.2%;相应的年浓度分担率则分别为76.5%和68.4%,在城市中心区以及道路边2种污染物的浓度分担率则更高.因此,在北京市对机动车排放污染实施控制是有效削减CO和NOx的主要途径.  相似文献   

4.
将可拓法应用于城市机动车尾气污染综合控制体系评价。在分析北京市机动车尾气污染控制体系评价指标的基础上,建立了评价的物元模型,该模型充分考虑北京市机动车和交通控制的综合指标。计算结果表明:北京市机动车尾气污染综合控制体系评价等级为III级,机动车尾气排放对城市环境产生一定的影响.本法简单易懂,能确切反映城市机动车尾气污染综合控制措施的实施效果,为城市机动车尾气污染综合控制提供了一种新的思路。  相似文献   

5.
北京密云水库石匣小流域空间数据库的初步建立   总被引:6,自引:0,他引:6  
将地理信息系统引入本区非点源污染研究。利用Arcview地理信息系统进行重点小流域的地形地貌三维分析。运用卫星遥感影象,经解译处理得到研究区土地利用现状及其空间分布数据,对石匣小流域的非点源污染现状进行研究,建立一个包含非点源污染信息的数据库。利用GIS空间分析能力,综合分析数字高程模型(DEM)、坡度、土地利用、各种分级专题图,研究它们之间的相互关系,确定流域非点源污染的分布规律及重点控制区。  相似文献   

6.
北京密云水库石匣小流域空问数据库的初步建立   总被引:1,自引:0,他引:1  
将地理信息系统引入本区非点源污染研究,利用Arcview地理信息系统进行重点小流域的地形地貌三维分析.运用卫星遥感影象,经解译处理得到研究区土地利用现状及其空间分布数据.对石匣小流域的非点源污染现状进行研究,建立一个包含非点源污染信息的数据库。利用GIS空间分析能力,综合分析数字高程模型(DEM)、坡度、土地利用、各种分级专题图,研究它们之间的相互关系,确定流域非点源污染的分布规律及重点控制区。  相似文献   

7.
随着城市机动车的飞速发展,目前北京市机动车保有量位居全国各大城市前列,其中私人小汽车的保有量为全国第一位,近年来一直呈快速上升之势。机动车的激增不仅极大地增加了城市的交通压力,而且排放的污染物是制造雾霾天气的主要来源之一,对北京市的气候变化有着极大的影响。本研究通过采集并分析测定采暖期和非采暖期内北京市不同交通区域内大气环境中PM2.5的化学组成,找到了各种机动车污染物的时空分布规律及其成分之间的差异,从而可以有针对性的制定相关措施,减少机动车尾气污染对环境和人体的危害。  相似文献   

8.
为了解机动车尾气污染分布规律,开展了机动车尾气对金华市空气质量影响的专项调查.结果表明,城市空气中机动车尾气污染物浓度大小与车流量、车辆类型、大气温度和扩散高度相关,交通干线两旁的机动车尾气污染较为严重.  相似文献   

9.
机动车排放检测和维修制度实施效果分析   总被引:7,自引:0,他引:7  
实施检测和维修制度是机动车污染控制的重要措施 ,机动车排放检测是检测和维修制度的主要内容 .本研究利用累积分布曲线 ,通过双怠速检测排放限值对各类型高排放车辆的识别率 ,从检测数据、现行标准、上线合格率 3个角度对北京市检测和维修制度的排放限值制定、组织形式和实施效果进行分析 ,提出各受检物排放限值的匹配原则 .  相似文献   

10.
基于GIS的城市大气TSP污染空间分析   总被引:10,自引:0,他引:10  
赵同谦  胡斌 《环境工程》2002,20(3):68-69
利用GIS的空间分析功能 ,对焦作城区大气TSP的污染状况及污染源的内在关系进行了深入的分析 ,通过建立TSP污染类型划分标准和污染动态变化分类系统 ,对城区TSP污染进行了分区评价 ,并进一步对城区大气TSP污染的空间动态转化规律和趋势进行了研究  相似文献   

11.
中国机动车排放清单的建立   总被引:22,自引:10,他引:12  
宋翔宇  谢绍东 《环境科学》2006,27(6):1041-1045
以中国2002年各省统计年鉴中关于机动车及道路信息的数据为基础,并根据COPERTⅢ模型计算出的2002年中国各省区各种机动车类型在城区、郊区和高速公路3种行驶工况下的排放因子,应用GIS技术建立了40km×40km的高空间分辨率的中国机动车排放源清单.结果表明,2002年中国机动车排放CO、NOx、NMVOC和PM10的排放总量分别为2 815×104、305×104、461×104和111×104t,主要来源于摩托车和汽油小客车的排放.污染物排放量的空间分布显示出其排放集中于经济发达地区,10.8%、2.2%、9.7%和5.3%的国土面积分别排放了84%的CO、55%的NMVOC、48%的NOx和48%的颗粒物,并呈现出东部高于西部、沿海高于内地的趋势,其中长江三角洲、珠江三角洲和京津地区的排放相对较强.  相似文献   

12.
北京市轻型汽车排放新标准   总被引:3,自引:0,他引:3  
如何有效地控制汽车污染,已经成为我国一些大型城市迫切需要解决的问题.对北京市机动车污染状况的调查分析表明,NOx和CO的排放分担率已达41%和82%;在4种不同控制方案的排放削减效果与成本计算中发现,严格的新车排放标准,才能有效地削减NOx排放;而且,这些严格的排放标准方案具有更低的削减成本,因此,在具备可行性的前提下,北京市应该尽可能采用严格的新车排放标准方案,才能尽快控制汽车排放污染,改善城市大气环境质量.  相似文献   

13.
道路机动车尾气排放是造成城市近地面空气污染的主要原因之一,建立基于城市功能区划分的道路机动车大气污染物排放清单对改善中观尺度的城市空气质量具有重要辅助作用.本文以厦门市海沧区为例,基于城市功能区划分方法,结合各功能区内监测道路的机动车通行量实测数据,建立道路机动车大气污染物排放清单,并分析各功能区道路机动车大气污染物排放特征.结果发现,海沧区道路机动车尾气排放物中CO的排放贡献率最高,工业区和居住区的道路机动车大气污染物排放量对海沧区的空气污染贡献率最大,海沧区夜间大气污染物的主要排放源来自于工业区道路机动车大气污染物排放;生态服务区及公共管理与公共服务区的道路机动车排放特征受相邻工业区机动车大气污染物排放的影响较为显著.研究表明:城市功能区分布欠合理是导致道路机动车大气污染物高排放量的重要原因之一;基于城市功能区划分构建道路机动车大气污染物排放清单的研究方法,不仅可为中观尺度下的城市大气污染排放情况提供有效的调查途径,而且能为城市功能格局的合理规划提供重要的理论依据.  相似文献   

14.
为研究京津冀地区天然源挥发性有机化合物(BVOCs)近20a排放量及时空分布特征,本文基于卫星遥感解译获得的2000年、2005年、2010年、2015年、2020年共5期中国土地利用数据,计算获得了京津冀地区各市县BVOCs排放量及排放组成,同时对京津冀地区近20a的BVOCs排放的时空分布进行了特征分析.结果表明,近20a京津冀地区BVOCs平均排放总量为76.40万t/a,其中河北省、北京市、天津市的平均排放总量分别为59.11万t/a,15.29万t/a,2.00万t/a;按照排放组成分析,ISOP平均排放总量为16.80万t/a,占总排放量的21.99%,TMT平均排放总量为29.62万t/a,占总排放量的38.77%,OVOCs平均排放总量为29.97万t/a,占总排放量的39.23%.根据排放时间特征分析,京津冀地区冬季BVOCs排放量最低、夏季BVOCs排放量最高.BVOCs排放的空间分布与土地利用类型和植被分布密切相关,不同土地利用类型的BVOCs排放贡献具有显著差异,近20a京津冀地区林地、耕地、草地的BVOCs平均排放量分别为60.33万t/a,12.78万t/a,2.31万t/a,分别占总排放量的78.90%,16.79%,3.04%.京津冀地区BVOCs空间排放分布差异比较明显,北部、东北部的整体排放量明显高于南部、东南部.本研究可为BVOCs的计算提供研究思路,同时可为京津冀地区空气污染治理提供有关基础数据.  相似文献   

15.
北京市机动车污染物排放特征   总被引:73,自引:10,他引:63  
定量分析计算机动车污染物排放特征 ,对城市汽车污染控制决策具有重要意义 .在利用实测数据确定基本参数的基础上 ,用 MOBILE5模型计算了北京市机动车污染物排放因子 ,获得了城区和全市机动车污染物排放总量和排放分担率 ,并分析了不同车型车种在城市区域汽车污染中的贡献率 .结果表明 ,北京市城区 CO,HC和 NOx 的排放总量中 ,汽车源排放分担率分别为 :78% ,83%和 46% .  相似文献   

16.
为了研究未来北京市机动车排放控制措施的减排效果,本文基于情景分析法,以2010年为基准年,通过设置3类控制措施情景,估算2011~2020年不同情景下北京市机动车常规污染物排放量,并在基准情景基础上,估算污染物减排量,分析控制措施对不同类型机动车的减排贡献.结果表明,尽管未来北京市机动车保有量会有较大增长,实施机动车排放控制措施仍可取得显著的减排效果.单一措施中,淘汰高排放车减排量最大.其中,淘汰轻型客车可有效减少CO的排放,减排贡献率为89.4%;淘汰重型客车可对NOx、HC和PM10达到有效削减,其贡献率分别为65.5%、55.8%、93.4%.实施新的排放标准对重型柴油车的排放也有明显控制效果,且4种污染物都能得到有效削减.综合实施各种措施的效果最为显著,2020年对CO、NOx、HC、PM10的削减效果分别达到46.4%、42.1%、8.6%和50.6%.  相似文献   

17.
杭州市机动车污染物排放清单的建立   总被引:8,自引:0,他引:8       下载免费PDF全文
基于调研的基础数据,运用修正后的IVE排放模型及GIS系统建立了杭州市2010年1km×1km的高时空分辨率的机动车排放清单.结果表明,2010年杭州市机动车污染物CO、HC、NOx、PM的年排放量分别为44.06,2.31,4.43,0.65万t,主要来自线源道路的排放.各车型污染物分担率各不相同,汽油乘用车和公交车排放CO和HC最大,柴油重型货车和公交车是NOx和PM排放的主要来源,两种燃油下的机动车排放差异十分明显.机动车污染排放与路网密集程度及道路长度密切相关,因此西湖区和江干区排放总量远远高出其他区域.机动车各污染物排放强度空间分布均呈现由城市中心向城市边缘的递减趋势,各污染物中心城区排放量占总排量的70%以上.机动车污染物排放日变化十分明显,与人群出行规律有极大的相关性.  相似文献   

18.
京津冀国家干线公路污染空间特征分析   总被引:2,自引:0,他引:2  
李海萍  赵颖  傅毅明 《环境科学学报》2016,36(10):3515-3526
以国家干线公路交通量信息和单车排放因子为基础,基于GIS的路网线性参考系统,采用动态分段技术和核密度分析方法,从路段、污染物和车型这3个层次对2014年京津冀国家干线公路交通污染排放强度的空间差异进行分析.结果表明,车流量、车型构成和路网布局是引起排放强度空间分布差异的主要因素,排放强度高的路段集中在路网密度大且公路使用率高的京津地区,中小客车和特大货车对污染物排放强度影响显著.因使用燃料和车型的不同,NO_x、PM_(10)和PM_(2.5)排放强度分布大体一致,HC、CO空间分布更为相似.此外,经济发展水平、产业结构特征也是重要影响因素.北京除特大货车和集装箱以外的其他车型排放强度均很高,天津货车和客车排放强度均较高,河北货车排放强度高于客车.  相似文献   

19.
机动车排放已成为城市地区人为源挥发性有机物(VOCs)的重要来源,排放清单是量化其环境影响的重要手段.针对已有研究中存在的过程区分不清、排放因子测试不全和气象参数考虑不细等问题,基于文献调研与实验测试完善了排放因子库,在月尺度上提出了涵盖尾气排放和蒸发排放(包括运行损失、昼间排放、热浸排放和加油排放)的机动车全过程VOCs逐月排放清单构建方法,并应用此方法建立了2000~2020年天津市机动车全过程VOCs排放清单.研究期内,天津市机动车VOCs排放总量呈现出先缓慢上升后逐步下降的趋势,2020年排放总量为2.14万t,小型客车是对排放总量贡献最大的车型,贡献率达75.00%.排放标准升级对不同过程VOCs排放的影响存在差异.与尾气排放量的持续下降不同,蒸发排放量呈现出先升后降的倒U型走势,且对总排放量的贡献逐年上升,2020年时贡献率为31.69%.机动车排放的月度变化受活动水平与排放因子的双重影响.VOCs排放量呈现出秋冬季高和春夏季低的特点,2020年新冠疫情期间,封控措施限制了机动车活动水平,使得VOCs排放量显著低于往年同期.计算方法和数据结论可为大气污染防治工作提供技术参考...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号