首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
道路灰尘铂族元素含量的短期变化过程分析   总被引:4,自引:0,他引:4  
选择上海市区中山北路(华东师大~武夷路)、长宁路(中山西路~安西路)、杨柳青路(金沙江路~武宁路)等3条道路,对道路灰尘铂族元素(PGEs)含量的短期变化过程进行研究.结果表明,Rh的含量为24.95~36.24ng·g-1(平均值为29.42ng·g-1),Pd的含量为85.34~158.89ng·g-1(平均值为117.88ng·g-1),Pt含量为20.15~48.48ng·g-1(平均值为34.42ng·g-1).其中,道路灰尘Rh、Pd、Pt含量分别是参照点的19.48倍、12.17倍和64.94倍.与国际其他城市相比,Pt含量较低,Pd和Rh含量处于中间水平.总体而言,道路灰尘PGEs含量及负荷随时间变化呈上升趋势,到达上限后,变化则趋于和缓.在车流量恒定的情况下,PGEs浓度及负荷的短期变化主要归因于气象条件的变化.降雨会使PGEs浓度降低,但不同类型降雨会使PGEs负荷发生不同变化,雨量较大,则负荷降低;;雨量较小,负荷反而有升高可能;;连续降雨后,PGEs浓度与负荷达到下限.一定的风力扰动会使PGEs浓度升高,但使PGEs的负荷变化变得较为复杂;;连续干燥无风天气会使上述PGEs浓度及负荷达...  相似文献   

2.
厦门市道路灰尘中铂族元素的污染特征   总被引:1,自引:1,他引:0  
鉴于铂族元素(PGEs)对生态环境和人体健康的潜在危害,对厦门市道路灰尘中PGEs的浓度水平和分布特征进行研究.于2012年10月采集城区主干道、隧道、旅游区和工业区的道路灰尘样品,经王水微波消解及阳离子交换树脂(Dowex AG50W-X8)分离纯化后,利用电感耦合等离子体质谱(ICP-MS)进行测定.结果表明,厦门城区主干道道路灰尘中钯(Pd)、铂(Pt)和铑(Rh)的平均浓度(范围)分别为:246.82(58.68~765.52)、95.45(42.14~371.36)和51.76(21.04~119.72)ng·g-1,均比地壳丰度值高出两个数量级.与国内外其它城市相比,厦门城区道路灰尘中Pd、Pt和Rh浓度均处于较高污染水平.不同功能区道路灰尘PGEs含量分布为:隧道城区工业区旅游区,其分布特征主要受机动车流量的影响.PGEs元素之间的相关性分析结果显示Pd与Rh的相关性较大,而Pt与Pd、Rh的相关系数均较小,说明除了机动车排放以外,可能存在其他的污染来源.旅游区禁止机动车行驶,但仍检出较高含量的PGEs,说明周边地区道路灰尘中PGEs可通过大气扩散作用进行迁移.  相似文献   

3.
道路环境PGEs多介质累积规律   总被引:3,自引:1,他引:2  
刘玉燕  刘敏  程书波 《环境科学》2009,30(10):3050-3054
为了研究道路环境PGEs多介质累积规律,选择上海市5条道路,同步采集灰尘、土壤及植物样品,对其中铂族元素(PGEs)含量水平进行分析.结果表明,灰尘中Rh、Pd、Pt平均浓度分别为24.92、88.39、22.28 ng/g,土壤中Rh、Pd、Pt平均浓度分别为3.64、17.45、0.97 ng/g,植物中Rh、Pd、Pt平均浓度仅分别达到2.66、6.39、0.57 ng/g,灰尘PGEs浓度远高于土壤及植物,土壤与植物中Pt、Rh浓度水平较接近;道路环境PGEs分布呈现一定规律性,但与交通流量关系并不密切;路边植物对道路灰尘PGEs吸附能力表现为Pt>Pd>Rh,其中,对Pt、Pd吸附作用非常明显,对Rh几乎不存在吸附作用,路边植物对土壤PGEs的吸收能力为Pd>Rh>Pt,Pd的生物有效性最大;多介质PGEs比例值很接近或部分重合,且均在上海市道路灰尘PGEs比值范围内,反映出上海市道路环境PGEs来源相同且均来自汽车VECs.  相似文献   

4.
刘玉燕  刘浩峰  张兰 《环境科学》2013,34(2):494-498
选择干旱区中小城市昌吉市,对其降雪及积雪中铂族元素(PGEs)含量分布及影响因素进行研究.运用ICP-MS对样品进行分析测定.结果表明,降雪中Rh、Pd、Pt平均含量分别为0.43 ng·L-1(未检出~2.24 ng·L-1)、60.07 ng·L-1(46.66~84.25 ng·L-1)和4.54 ng·L-1(3.02~6.38 ng·L-1).不同场次降雪中PGEs含量存在差异,随雪前干燥期天数加长,降雪中PGEs含量趋于增大;降雪量对PGEs含量也有一定影响,降雪量越小,雪中PGEs含量越高.积雪中Rh、Pd、Pt的平均含量分别为6.65 ng·L-1(2.50~18.80 ng·L-1)、83.45 ng·L-1(46.83~199.20 ng·L-1)和8.17 ng·L-1(4.27~13.78 ng·L-1).积雪中PGEs含量远高于降雪,降雪中PGEs仅来自于单场次降雪对大气PGEs的淋洗,而积雪中PGEs不仅来自于多场次降雪中PGEs的累积,且由于积雪长时间暴露,还源源不断接受了大气干沉降带来的PGEs.各采样点积雪PGEs含量表现出交通区>居民文教区>公园广场区>郊区农田,随功能区不同,积雪中PGEs输入途径与输入量有显著差异,这是造成各功能区积雪PGEs含量不同且具有一定规律性的主要原因.  相似文献   

5.
梅毅  漆亮  赵正 《地球与环境》2018,46(3):245-250
为降低温室效应气体一氧化碳、氮氧化物及碳氢化合物的排放,全球自上世纪80年代末期开始在汽车中引入铂族元素(PGE)催化剂,其释放的Pt、Pd和Rh等元素在城市道路尘土和路边土壤中聚积,对自然环境及人体健康产生危害。本文在贵州省贵阳市的主要交通路段采集了尘土和土壤样品,对样品中的铂族元素进行了同位素稀释-等离子体质谱法测定。结果表明,所有样品的铂族元素均高于未被污染土壤的背景值,而尘土样品中铂族元素含量明显高于土壤样品。其中Pt、Pd和Rh含量明显高于其它铂族元素(Ru和Ir等),并与Ru和Ir呈一定的正相关关系,表明汽车尾气催化剂的主要组成为Pt、Pd和Rh;高含量的Os具有低的~(187)Os/~(188)Os比值,表明Ru、Ir和Os也源于汽车尾气催化剂,可能是以杂质的形式存在于汽车尾气催化剂中。  相似文献   

6.
以乌鲁木齐市为研究区,选取河滩路、友好南路、温泉西路、乌奎高速公路及七道湾路等5条典型道路,对道路灰尘与土壤中Pd、Rh季节变化特征进行研究.结果表明,春、夏、秋、冬的灰尘中Pd含量分别为74.61(31.59~126.3),134.26(54.59~332.51),100.49(20.935~244.9), 83.43(47.97~125.40)ng/g;灰尘中Rh含量分别为8.41(4.56~14.63),18.48(11.62~31.56),10.27(3.83~19.1),9.20(5.34~16.68)ng/g;土壤中Pd含量分别为44.42(13.59~109.40),30.47(13.24~70.87),30.01(21.55~49.19),26.28(14.85~44.83)ng/g;土壤Rh含量分别为8.47(5.93~13.40), 8.11(4.65~ 13.45),3.81(1.67~8.02),3.22(2.56~4.26)ng/g. Pd、Rh含量均表现出明显的季节变化,其中,灰尘中Pd、Rh含量在夏秋季高,冬春季低;土壤中Pd、Rh含量在春夏季高,冬季最低,秋季为中间水平,地域气候条件是PGEs季节变化的主要影响因素.冬、春季节的降雪、扫雪及积雪堆积习惯使乌鲁木齐道路环境中灰尘与土壤的季节变化并没有完全相同. 湿润区与干旱区城市PGEs的季节变化明显不同,两类地区的气候特征不同是造成这种差异存在的根本原因.  相似文献   

7.
上海市大气气溶胶中铂元素污染状况调查   总被引:3,自引:0,他引:3  
为调查上海市大气气溶胶中铂元素的污染状况,用PM10-2型可吸入颗粒物采样器采集了上海市大气气溶胶样品,采样时间分别为2003-12~2005-12.用微波消解密闭系统消解样品,电感耦合等离子体质谱法(ICP-MS)测定了大气气溶胶中Pt的含量.分析结果表明,同清洁对照点((0.65±0.16)pg·m-3)相比,上海市中心区大气中Pt((1.69±0.93)pg·m-3)的污染是明显的;装有三元催化转化器的汽车尾气中Pt的含量均在100ng·g-1以上,远远高于大气气溶胶样品(人民广场平均值21.7ng·g-1);不同交通密度区Pt含量分析结果表明,Pt含量与交通密度紧密相关,这说明装有三元催化器的汽车尾气是气溶胶中Pt污染的主要来源;此外,上海市大气气溶胶中Pt呈现季节性变化,并受气象条件影响.同世界其它城市相比,上海市气溶胶中铂元素污染程度还较低,但是这种潜在的重金属污染应该引起重视.  相似文献   

8.
道路灰尘PGEs时间变化特征   总被引:1,自引:1,他引:0  
刘玉燕  刘敏  王玉杰 《环境科学》2011,32(9):2676-2680
为了研究道路灰尘铂族元素(PGEs)时间变化规律及其影响机制,以上海市为研究区,共采集季节样品24个、年际样品18个.用王水消解制样,ICP-MS测定.结果表明,灰尘PGEs春、夏、秋、冬含量分别为,Rh:10.40(6.06~17.28)ng/g、11.60(5.52~20.11)ng/g、32.91(18.53~6...  相似文献   

9.
自上世纪90年代起,汽车工业中大量引入铂族元素催化剂,将有害气体转变为二氧化碳和氮气,以降低这些温室气体的排放。但铂族元素催化剂释放的Pt,Pd和Rh等元素在城市道路尘土和路边土壤中聚积,其含量大大的超过正常背景值。本次研究在深圳,广州,北京和贵阳等城市的主要交通路段采集了尘土、土壤及新鲜土壤样品,采用改进的卡洛斯管法和蒸馏法对样品中的全部铂族元素进行了分析。结果表明,所有样品的铂族元素含量均高于背景值,尘土样品中铂族元素含量明显高于土壤样品,其中Pt,Pd,Rh含量明显高于其它铂族元素,并呈正相关,表明汽车尾气催化剂的主要组成为Pt,Pd,和Rh。所有样品Ru,Ir和Os的含量都明显高于背景值,具有高含量的Os、低的187 Os/188 Os比值特征,表明Ru,Ir和Os也来源于汽车尾气催化剂,并且可能以杂质的形式存在于汽车尾气催化剂中。  相似文献   

10.
针对乌达区约200km~2的区域按照1km网格法在185个点位采集了约1.5mm厚度的地表尘土样.热解-Lumex RA-915汞分析仪对其测试结果表明:煤矿区尘土汞含量范围117~765ng/g,平均值为285ng/g;工业园尘土汞含量范围160~6453ng/g,平均值为804ng/g;城区尘土汞含量范围41~382ng/g,平均值为160ng/g;农场尘土汞含量范围16~198ng/g,平均值为66ng/g;荒地尘土范围3~284ng/g,平均值为50ng/g.乌达区尘土汞分布具有显著的非均一性.与乌达区背景值(18ng/g)和中国潮土背景值(50ng/g)相比较,乌达工业园和煤矿区尘土汞明显富集.与国内金属矿区、城区尘土Hg含量相比,乌达煤矿区、城区尘土Hg含量较低;煤矿区尘土汞与煤火区、矸石山相对位置和本身地势有关;城区位于煤矿区下风向,受煤矿区煤火影响,植被稀少、空气干燥和夏季日照较长成为制约汞沉降的主控因素;工业园区的极大值点可能与区域地理位置和PVC生产相关.通过计算Igeo值,发现乌达区工业园污染严重,偏重污染区域占全区36.59%,7.32%达到极重污染程度;煤矿区多为偏中污染和中污染,在全区所占比例为84.09%,偏重污染区域仅为2.27%;城区、农场和荒地污染较少.  相似文献   

11.
闽江干流沿岸土壤及河口沉积柱中有机氯农药分布特征   总被引:6,自引:4,他引:2  
沿闽江干流沿岸采集19个表层土壤样品及1个河口沉积物柱样,采用气相色谱(GC-ECD)内标法分析其有机氯农药(OCPs)的含量,揭示了研究区土壤及河口沉积柱中有机氯农药的残留水平、分布及来源.结果表明,干流沿岸土壤中总的OCPs含量(干重)范围为4.31~877.80 ng·g-1,平均值为74.13 ng·g-1,且...  相似文献   

12.
上海市地表灰尘中PAHs季节变化与功能区差异   总被引:5,自引:3,他引:2  
程书波  刘敏  欧冬妮  高磊  王丽丽  许世远 《环境科学》2007,28(12):2789-2793
研究了上海市中心城区地表灰尘中多环芳烃(PAHs)的季节变化与功能区差异,并探讨了这种变化特征的原因.结果表明,上海市中心城区地表灰尘中PAHs累积水平具有显著的季节变化,PAHs总量和组分均表现出冬季含量高于夏季的特征.冬季样品中PAHs含量为9 176~32?573 ng·g-1,平均值为20 648 ng·g-1;而夏季PAHs含量为6?875~27?766 ng·g-1,平均值仅为14?098 ng·g-1.PAHs组分也表现出相似特征,冬季含量为50(二氢苊)~3 162 ng·g-1 (茚并[1,2,3-c,d ]芘),夏季含量为3(苊)~1 485 ng·g-1 (茚并[1,2,3-c,d ]芘).各个功能区地表灰尘PAHs含量的差异明显.冬季最高值出现在工业区(31 163 ng·g-1)、商业区(24 932 ng·g-1)和交通要道(18 815 ng·g-1),最低值出现在公园(7 885 ng·g-1)和绿地(8 036 ng·g-1);夏季最低值出现在公园(7 942 ng·g-1),最高值出现在交通要道(14 528 ng·g-1)、工业区(14 247 ng·g-1)和商业区(11 523 ng·g-1).所有功能区样品中PAHs组分含量呈现出按环数或分子量的增加而逐渐升高的趋势.大城市地表灰尘中PAHs的季节变化与功能区差异与其来源密切相关,也受到各组分理化性质的影响.  相似文献   

13.
Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations[RL2] of Pt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentration of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 ng/g, respectively. The[RL3] distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the elements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.  相似文献   

14.
Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations ofPt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentrations of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 rig/g, respectively. The distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the dements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.  相似文献   

15.
城市灰尘PAHs累积与迁移过程的影响因素研究   总被引:3,自引:0,他引:3  
以上海市为例,探讨了城市中心城区地表灰尘中多环芳烃(PAHs)累积与迁移过程的影响因素.结果表明,粒度只是影响城市灰尘吸附PAHs的一个次要因子,与PAHs含量之间没有明显的相关关系.城市灰尘TOC与PAHs含量显著正相关(冬季r=0.62,p<0.000 1;夏季r=0.55,p=0.002),说明对于城市地表灰尘而言,有机质的含量越高,其吸收PAHs的能力就越强,这种结果与理论上PAHs的憎水亲脂性相一致.风向能够直接影响PAHs在空间上的分布趋势,污染源下风向的地区更容易累积较多的PAHs,且距离污染源越近,污染程度越重,相反,污染源上风向的地区则不利于PAHs的累积,污染程度较轻.夏季最高值出现在西北城区,含量为27 766 ng·g-1,冬季最高值出现在南部和东部城区,含量分别为30 741 ng·g-1和32 573 ng·g-1.大城市中心区存在PAHs污染的"空心效应".温度是影响城市灰尘PAHs累积与迁移的重要气象参数.  相似文献   

16.
有色冶炼园区道路扬尘中重金属污染特征及健康风险评价   总被引:4,自引:4,他引:0  
为研究有色冶炼工业园区周边道路扬尘中重金属污染特征及其健康风险,在云南省蒙自地区采集了城市道路、有色冶炼工业园区道路以及隧道尘样品,通过再悬浮设备将尘样悬浮至Teflon滤膜上获得PM_(2.5)和PM_(10)样品,并利用ICP-MS分析了Cr、Mn、Ni、Cu、Zn、As、Cd和Pb这8种重金属的含量.结果表明,在PM_(2.5)中重金属的平均含量高于PM_(10).Pb、Cd、As和Zn在3种道路扬尘中平均含量最高,且在不同道路扬尘中平均含量差异表现为:隧道工业园区道路城市道路.隧道扬尘中Pb和As的平均含量高于其它重金属,在PM_(2.5)中达到92 338.3 mg·kg~(-1)和12 457.7 mg·kg~(-1);工业园区道路扬尘中Pb和Zn的平均含量最高,在PM_(2.5)中分别是4 381.7 mg·kg~(-1)和4 685.0 mg·kg~(-1);城市道路平均含量最高的重金属是Zn和Pb,在PM_(2.5)中为1 952.6 mg·kg~(-1)和1 944.8 mg·kg~(-1), 3种道路扬尘中Cu、Zn、As、Cd和Pb平均含量均高于云南省土壤背景值.富集因子分析和主成分分析结果显示:Cu、Zn、As、Cd和Pb在3种道路上均有明显富集,受到有色冶炼工业和交通源的显著影响;而Cr、Mn和Ni在3种道路上富集不明显,未受到明显的人为源影响.健康风险评价结果表明,摄食是主要的暴露途径;儿童的非致癌风险高于成人.在PM_(2.5)道路扬尘中所含有的As、Cd和Pb都会对成人和儿童造成非致癌风险,在PM_(10)工业园区道路和隧道扬尘中的As、Cd和Pb对人体有非致癌风险,城市道路中的As仅对儿童有非致癌风险.此外,隧道中的As具有致癌风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号