首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
In addition to encoding referential information and information about the sender’s motivation, mammalian alarm calls may encode information about other attributes of the sender, providing the potential for recognition among kin, mates, and neighbors. Here, we examined 96 speckled ground squirrels (Spermophilus suslicus), 100 yellow ground squirrels (Spermophilus fulvus) and 85 yellow-bellied marmots (Marmota flaviventris) to determine whether their alarm calls differed between species in their ability to encode information about the caller’s sex, age, and identity. Alarm calls were elicited by approaching individually identified animals in live-traps. We assume this experimental design modeled a naturally occurring predatory event, when receivers should acquire information about attributes of a caller from a single bout of alarm calls. In each species, variation that allows identification of the caller’s identity was greater than variation allowing identification of age or sex. We discuss these results in relation to each species’ biology and sociality.  相似文献   

2.
3.
4.
Non-hibernating pikas collect winter food reserves and store them in hay piles. Individualization of alarm calls might allow discrimination between colony members and conspecifics trying to steal food items from a colony pile. We investigated vocal posture, vocal tract length, and individual acoustic variation of alarm calls, emitted by wild-living Altai pikas Ochotona alpina toward a researcher. Recording started when a pika started calling and lasted as long as possible. The alarm call series of 442 individual callers from different colonies consisted of discrete short (0.073–0.157 s), high-frequency (7.31–15.46 kHz), and frequency-modulated calls separated by irregular intervals. Analysis of 442 discrete calls, the second of each series, revealed that 44.34% calls lacked nonlinear phenomena, in 7.02% nonlinear phenomena covered less than half of call duration, and in 48.64% nonlinear phenomena covered more than half of call duration. Peak frequencies varied among individuals but always fitted one of three maxima corresponding to the vocal tract resonance frequencies (formants) calculated for an estimated 45-mm oral vocal tract. Discriminant analysis using variables of 8 calls per series of 36 different callers, each from a different colony, correctly assigned over 90% of the calls to individuals. Consequently, Altai pika alarm calls are individualistic and nonlinear phenomena might further increase this acoustic individualization. Additionally, video analysis revealed a call-synchronous, very fast (0.13–0.23 s) folding, depression, and subsequent re-expansion of the pinna confirming an earlier report of this behavior that apparently contributes to protecting the hearing apparatus from damage by the self-generated high-intensity alarm calls.  相似文献   

5.
Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.  相似文献   

6.
While some avian mimics appear to select sounds randomly, other species preferentially imitate sounds such as predator calls that are associated with danger. Previous work has shown that the Greater Racket-tailed Drongo (Dicrurus paradiseus) incorporates predator calls and heterospecific alarm calls into its own species-typical alarm vocalizations. Here, we show that another passerine species, the Sri Lanka Magpie (Urocissa ornata), which inhabits the same Sri Lankan rainforest, imitates three of the same predator calls that drongos do. For two of these call types, there is evidence that magpies also use them in alarm contexts. Our results support the hypothesis that imitated predator calls can serve as signals of alarm to multiple species.  相似文献   

7.
Distinct acoustic whistles are associated with the wing-beats of many doves, and are especially noticeable when doves ascend from the ground when startled. I thus hypothesized that these sounds may be used by flock-mates as cues of potential danger. To test this hypothesis, I compared the responses of mourning doves (Zenaida macroura), northern cardinals (Cardinalis cardinalis), and house sparrows (Passer domesticus) to audio playbacks of dove ‘startle wing-whistles’, cardinal alarm calls, dove ‘nonstartle wing-whistles’, and sparrow ‘social chatter’. Following playbacks of startle wing-whistles and alarm calls, conspecifics and heterospecifics startled and increased vigilance more than after playbacks of other sounds. Also, the latency to return to feeding was greater following playbacks of startle wing-whistles and alarm calls than following playbacks of other sounds. These results suggest that both conspecifics and heterospecifics may attend to dove wing-whistles in decisions related to antipredator behaviors. Whether the sounds of dove wing-whistles are intentionally produced signals warrants further testing.  相似文献   

8.
9.
In goitred gazelles (Gazella subgutturosa), sexual dimorphism of larynx size and position is reminiscent of the case in humans, suggesting shared features of vocal ontogenesis in both species. This study investigates the ontogeny of nasal and oral calls in 23 (10 male and 13 female) individually identified goitred gazelles from shortly after birth up to adolescence. The fundamental frequency (f0) and formants were measured as the acoustic correlates of the developing sexual dimorphism. Settings for LPC analysis of formants were based on anatomical dissections of 5 specimens. Along ontogenesis, compared to females, male f0 was consistently lower both in oral and nasal calls and male formants were lower in oral calls, whereas the first two formants of nasal calls did not differ between sexes. In goitred gazelles, significant sex differences in f0 and formants appeared as early as the second week of life, while in humans they emerge only before puberty. This result suggests different pathways of vocal ontogenesis in the goitred gazelles and in humans.  相似文献   

10.
In neonate ruminants, the acoustic structure of vocalizations may depend on sex, vocal anatomy, hormonal profiles and body mass and on environmental factors. In neonate wild-living Mongolian gazelles Procapra gutturosa, hand-captured during biomedical monitoring in the Daurian steppes at the Russian-Mongolian border, we spectrographically analysed distress calls and measured body mass of 22 individuals (6 males, 16 females). For 20 (5 male, 15 female) of these individuals, serum testosterone levels were also analysed. In addition, we measured relevant dimensions of the vocal apparatus (larynx, vocal folds, vocal tract) in one stillborn male Mongolian gazelle specimen. Neonate distress calls of either sex were high in maximum fundamental frequency (800–900 Hz), but the beginning and minimum fundamental frequencies were significantly lower in males than in females. Body mass was larger in males than in females. The levels of serum testosterone were marginally higher in males. No correlations were found between either body mass or serum testosterone values and any acoustic variable for males and females analysed together or separately. We discuss that the high-frequency calls of neonate Mongolian gazelles are more typical for closed-habitat neonate ruminants, whereas other open-habitat neonate ruminants (goitred gazelle Gazella subgutturosa, saiga antelope Saiga tatarica and reindeer Rangifer tarandus) produce low-frequency (<200 Hz) distress calls. Proximate cause for the high fundamental frequency of distress calls of neonate Mongolian gazelles is their very short, atypical vocal folds (4 mm) compared to the 7-mm vocal folds of neonate goitred gazelles, producing distress calls as low as 120 Hz.  相似文献   

11.
In pinnipeds, maternal care strategies and colony density may influence a species’ individual recognition system. We examined the onset of vocal recognition of mothers by Australian sea lion pups (Neophoca cinerea). At 2 months of age, pups responded significantly more to the calls of their own mothers than alien female calls demonstrating a finely tuned recognition system. However, newborn pups did not respond differentially to the calls of their mother from alien female calls suggesting that vocal recognition had not yet developed or is not yet expressed. These findings are in stark contrast to other otariid species where pups learn their mother’s voice before their first separation. Variance in colony density, pup movements, and natal site fidelity may have reduced selective pressures on call recognition in young sea lions, or alternatively, another sensory system may be used for recognition in the early stage of life.  相似文献   

12.
Recent research in songbirds has demonstrated that male singing behavior varies systematically with personality traits such as exploration and risk taking. Here we examine whether the production of bird calls, in addition to bird songs, is repeatable and related to exploratory behavior, using the black-capped chickadee (Poecile atricapillus) as a model. We assessed the exploratory behavior of individual birds in a novel environment task. We then recorded the vocalizations and accompanying motor behavior of both male and female chickadees, over the course of several days, in two different contexts: a control condition with no playback and a stressful condition where chick-a-dee mobbing calls were played to individual birds. We found that several vocalizations and behaviors were repeatable within both a control and a stressful context, and across contexts. While there was no relationship between vocal output and exploratory behavior in the control context, production of alarm and chick-a-dee calls in the stressful condition was positively associated with exploratory behavior. These findings are important because they show that bird calls, in addition to bird song, are an aspect of personality, in that calls are consistent both within and across contexts, and covary with other personality measures (exploration).  相似文献   

13.
Call rate can be a salient feature in animal communication. Depending on the species, different psychological variables appear to influence call rates but the exact nature of these relationships remains poorly explored. Here, we demonstrate for free-ranging Campbell’s monkeys that the call rates of four different alarm series (termed H, K, K+, and B series) vary systematically as a function of context, associated behaviour, and identity of the caller. K+ series were given more rapidly to predation than non-predation events, K+ and K series more rapidly to visual than auditory predator detection, and H series more rapidly while counterattacking an eagle than staying put. Finally, there were individual differences in B series, suggesting that call rate potentially provides listeners with cues about the caller’s anti-predator behaviour, event type experienced, and his identity.  相似文献   

14.
Urbanisation critically threatens biodiversity because of habitat destruction and novel selection pressures. Some animals can respond to these challenges by modifying their behaviour, particularly anti-predator behaviour, allowing them to persist in heavily transformed urban areas. We investigated whether the anti-predator behaviour of the Cape ground squirrel Xerus inauris differed in three localities that differed in their level of urbanisation. According to the habituation hypothesis, we predicted that ground squirrels in urban areas would: (a) be less vigilant and forage more; (b) trade-off flight/vigilance in favour of foraging; and (c) have shorter flight initiation distances (FID) when approached by a human observer. Observations were made in winter and summer at each locality. As expected, ground squirrels in urbanised areas were less vigilant and had shorter FIDs but did not trade-off between foraging and vigilance. In contrast, a population in a non-urbanised locality showed greater levels of vigilance, FID and traded-off vigilance and foraging. A population in a peri-urban locality showed mixed responses. Our results indicate that Cape ground squirrels reduce their anti-predator behaviour in urban areas and demonstrate a flexible behavioural response to urbanisation.  相似文献   

15.
A few species of mammals produce group-specific vocalisations that are passed on by learning, but the function of learned vocal variation remains poorly understood. Resident killer whales live in stable matrilineal groups with repertoires of seven to 17 stereotyped call types. Some types are shared among matrilines, but their structure typically shows matriline-specific differences. Our objective was to analyse calls of nine killer whale matrilines in British Columbia to test whether call similarity primarily reflects social or genetic relationships. Recordings were made in 1985–1995 in the presence of focal matrilines that were either alone or with groups with non-overlapping repertoires. We used neural network discrimination performance to measure the similarity of call types produced by different matrilines and determined matriline association rates from 757 encounters with one or more focal matrilines. Relatedness was measured by comparing variation at 11 microsatellite loci for the oldest female in each group. Call similarity was positively correlated with association rates for two of the three call types analysed. Similarity of the N4 call type was also correlated with matriarch relatedness. No relationship between relatedness and association frequency was detected. These results show that call structure reflects relatedness and social affiliation, but not because related groups spend more time together. Instead, call structure appears to play a role in kin recognition and shapes the association behaviour of killer whale groups. Our results therefore support the hypothesis that increasing social complexity plays a role in the evolution of learned vocalisations in some mammalian species.  相似文献   

16.
17.
Finding and attracting mates can impose costs on males in terms of increased encounters with, and attraction of, predators. To decrease the likelihood of predation, males may modify mate-acquisition efforts in two main ways: they may reduce mate-searching efforts or they may reduce mate-attraction efforts. The specific behavior that males change in the presence of predator cues should depend upon the nature of risk imposed by the type of predator present in the environment. For example, sit-and-wait predators impose greater costs to males moving in search of mates. Here, we test whether cues of the presence of a sit-and-wait predator lead to a reduction in mate-searching but not mate-acquisition behavior. We used a member of the Enchenopa binotata complex of treehoppers—a clade of vibrationally communicating insects in which males fly in search of mates and produce mate-attraction signals when they land on plant stems. We tested for changes in mate-searching and signaling behaviors when silk from a web-building spider was present or absent. We found that males delayed flight when spider silk was present but only if they were actively searching for mates. These results suggest that males have been selected to reduce predation risk by adjusting how they move about their environment according to the cues of sit-and-wait predators.  相似文献   

18.
Young Nile crocodiles Crocodylus niloticus start to produce calls inside the egg and carry on emitting sounds after hatching. These vocalizations elicit maternal care and influence the behaviour of other juveniles. In order to investigate the acoustic structure of these calls, focusing on a possible individual signature, we have performed acoustic analyses on 400 calls from ten young crocodiles during the first 4 days after hatching. Calls have a complex acoustic structure and are strongly frequency modulated. We assessed the differences between the calls of the individuals. We found a weak individual signature. An individual call-based recognition of young by the mother is thus unlikely. In other respects, the call acoustic structure changes from the first to the fourth day after hatching: fundamental frequency progressively decreases. These modifications might provide important information to the mother about her offspring—age and size—allowing her to customize her protective care to best suit the needs of each individual. Electronic supplementary material  Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Coatis (Nasua spp.), gregarious, omnivorous carnivores that range in forests from the southwestern USA to south America, dispatch millipedes by rolling them on the ground using rapid, alternating movements of their forepaws. Prey rolling of millipedes is thought to stimulate the depletion of their defensive secretions and to wipe off secretions before millipedes are consumed. We report that prey-rolling behavior in Nasua spp. is elicited by 1,4-benzoquinone; 2-methyl-1,4-benzoquinone; and 2-methoxy-3-methyl-1,4-benzoquinone, the chief components of the defensive secretions of julidan, spirobolidan, and spirostreptidan millipedes. Chemicals elaborated for defense sometimes evolutionarily “backfire,” providing cues to predators on the presence or identity of prey. The elicitation of prey-rolling behavior in Nasua spp. by benzoquinones illustrates this effect for millipedes (and possibly other arthropods) that defensively discharge these compounds.  相似文献   

20.
Unlike any other foraging phyllostomid bat studied to date, Poey’s flower bats (Phyllonycteris poeyi-Phyllostomidae) emit relatively long (up to 7.2 ms), intense, single-harmonic echolocation calls. These calls are readily detectable at distances of at least 15 m. Furthermore, the echolocation calls contain only the first harmonic, which is usually filtered out in the vocal tract of phyllostomids. The foraging echolocation calls of P. poeyi are more like search-phase echolocation calls of sympatric aerial-feeding bats (Molossidae, Vespertilionidae, Mormoopidae). Intense, long, narrowband, single-harmonic echolocation calls focus acoustic energy maximizing range and favoring detection, which may be particularly important for cruising bats, like P. poeyi, when flying in the open. Flying in enclosed spaces, P. poeyi emit short, low-intensity, frequency-modulated, multiharmonic echolocation calls typical of other phyllostomids. This is the first report of a phyllostomid species emitting long, intense, single-harmonic echolocation calls with most energy in the first harmonic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号