首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 346 毫秒
1.
分别采用三相平衡耦合地下水稀释模型(以下称方法1)和SESOIL耦合地下水稀释模型(以下称方法2)对北京市不同水文地质条件(永定河山前冲洪积扇顶部区域、中上部区域和下部区域)下27种VOCs(挥发性有机污染物)、31种SVOCs(半挥发性有机污染物)、11种农药/PCBs(多氯联苯)及二英基于保护地下水的土壤通用筛选值进行推导. 结果表明,下部区域土壤通用筛选值最保守,顶部区域次之,中上部区域最宽松. 采用方法1推导的中上部区域土壤通用筛选值分别是顶部区域和下部区域的1.1~1.4、9.9~34.9倍,顶部区域土壤通用筛选值是下部的10.7~24.9倍;采用方法2推导的中上部区域土壤通用筛选值是下部区域的9.8~49.9倍. 对于有连续非饱和带弱水层的中上部区域及下部区域,方法2推导的结果较方法1宽松. 其中,PAHs(多环芳烃)、PCBs、二英、多数农药及酯类等高Koc(有机碳-水分配系数)污染物均难以穿透清洁非饱和土壤进入地下水;而对于VOCs、酚类等低Koc污染物,方法2推导的中上部区域土壤通用筛选值普遍是方法1的4.3~18.4倍,下部区域为方法1的3.0~24.6倍. 考虑到土壤通用筛选值应具有风险筛选功能及一定保守性,建议各种污染物以顶部区域方法1推导结果及中上部区域和下部区域方法2推导结果中最保守的值作为北京市基于保护地下水的土壤通用筛选值.   相似文献   

2.
林挺  罗飞  朱艳  杨坤  郗秀平 《环境科学》2019,40(12):5640-5648
为合理推导基于保护地下水的土壤风险控制值和风险控制土方量,以珠三角某企业的电镀车间为研究区域,采用Hydrus-1D耦合地下水稀释模型构建水流和溶质运移方程,模拟六价铬和镍在包气带的迁移过程,并将计算结果与土壤-水分配耦合地下水稀释模型进行比较.结果表明,考虑包气带吸附作用下,Hydrus-1D耦合地下水稀释模型计算六价铬和镍的土壤风险控制值分别为41. 6 mg·kg~(-1)和619. 1 mg·kg~(-1),与土壤-水分配耦合地下水稀释模型的计算结果相比,其风险控制值分别提高了近10倍和45倍,风险控制土方量分别减少1 804 m3和44 590 m3.对于地下水位埋深较浅、水力联系密切的污染场地,可进一步开展水文地质调查,完整考虑污染物在包气带的迁移过程,采用Hydrus-1D耦合地下水稀释模型推导基于保护地下水的土壤风险控制值,以节约后期治理修复或风险管控成本.  相似文献   

3.
以含1,2-二氯乙烷等10种有机物污染土壤异位修复后回填为例,采用层次化方法评估将按原厂址健康风险评价确定的修复目标进行达标修复后的土壤回填对回填区地下水下游700 m处饮用水井水质的影响.第一层次预测结果显示8种污染物在回填土层淋溶液中的浓度将超过评价标准,可能对目标水井水质造成污染.考虑回填区非饱和带土壤的吸附截留进行第二层次评价的结果显示,到达回填区地下水水面处浓度依然超过评价标准的污染物降低至6种,不能排除对目标水井的水质影响.进一步考虑地下水混合稀释进行第三层次评估的结果显示,经地下水混合稀释后,超过评价标准的污染物降低至4种.最后,考虑饱和带吸附截留作用进行第四层次评估的结果显示,目标水井中超过评估标准的污染物仅1种.由此可见,随着评估层次的不断深入,虽然所需开展的工作及获取的场地参数增加,但是污染物预测浓度更接近目标预测点的浓度,需调整修复目标的污染物数量逐渐减少,污染防治成本将逐渐降低.  相似文献   

4.
挥发性有机污染物可以通过渗透、淋溶、挥发等方式入侵到地下水,场地环境中包括地下水介质.采用污染场地风险评估程序四步法,通过对某有机污染场地地下水采样分析调查,分析地下水中挥发性有机污染物的浓度和分布情况,得出以下结论.该场地的浅层地下水和深度离散地下水样本中理论生存期多于癌风险均高于项目的目标水平.其中,前者风险的来源主要是PCE、TCE和VC,而后者风险值主要贡献于TCE.若该场地要将地下水作为饮用水源,则需对地下水中化合物采取进一步的措施.  相似文献   

5.
基于保护地下水的土壤修复目标层次化制订方法   总被引:1,自引:0,他引:1       下载免费PDF全文
按照复杂程度将污染物从土壤经地下水迁移到下游饮水井的过程划分为3个层次,采用分层评估框架建立了基于保护地下水的土壤修复目标的制订方法,并利用该方法确定了某污染场地的土壤修复目标值. 结果表明,在污染场地下游200 m处的饮水井内水质标准不降低的前提下,随着评价层次的不断提高,需要修复的污染物由4种(苯、甲苯、乙苯、二甲苯)减至1种(苯),待修复土方量由23.1×104 m3降至4.7×104 m3,可极大地节约修复成本. 该场地污染土壤的第一层次和第二层次修复目标值与部分国家/地区的有关标准限值较为一致;第三层次修复目标值考虑的污染物迁移过程更加完整,更能反映场地的实际情况. 参数的敏感性分析表明,对土壤修复目标值计算结果影响最大的参数为土壤有机质质量分数、土壤有机碳-水分配系数和入渗速度. 在确定修复方案时,应该通过试验或补充调查获取这些参数,以降低结果的不确定性. 研究显示,将第三层次评估结果作为该污染场地的修复目标能充分保证下游饮水井内水质满足要求,并且可以避免过度修复.   相似文献   

6.
我国污染地下水的健康风险评估处于起步阶段,虽然已经发布了《污染场地风险评估技术导则》(HJ25.3-2014),但相关的理论和技术方法仍不成熟。根据国内外地下水健康风险评估的研究进展,同时总结了常用的评估模型(NAS四步法、RAGS模型、RBCA模型、多介质模型),为合理借鉴国外评估模型提供指导,并为我国进一步开展地下水健康风险评估提出建议:评估指南、标准以及模型的完善;地下水筛选值的制定;参数本地化。  相似文献   

7.
京津冀化工场地地下水污染修复治理对策研究   总被引:3,自引:2,他引:1       下载免费PDF全文
京津冀化工场地地下水污染问题突出,严重威胁当地饮水安全和可持续发展,亟待开展修复治理.针对京津冀化工场地地下水污染现状,分析了化工场地地下水污染修复面临的挑战,提出了分区分级的修复治理对策.结果表明:①针对可能存在NAPL(非水相液体污染物)的高风险污染源区,采取高强度修复措施,以实现污染物总量的快速削减;②针对中度污染区,采取单位能耗强度更低的长效修复措施,降低修复成本和二次污染风险;③针对低风险的轻度污染区,采取风险管控措施.结合对典型化工场地地下水污染修复技术的分析,提出的分区分级修复治理对策具有以下特点:①多技术耦合,形成互补效应,可提高修复效率;②节约修复成本,降低二次环境影响;③体现基于风险的原则,避免过度修复.   相似文献   

8.
针对地下水数值模拟中重模型软件技术、轻水文地质条件分析的问题,结合我国污染场地地下水数值模拟工作日渐增多的实际,通过收集资料和总结经验,对污染场地地下水数值模拟中模型维数、边界条件、源汇项及不确定分析等关键问题进行了探讨。研究认为:1污染场地地下水数值模拟应尽可能建立三维或准三维流模型;2通用水头边界在污染场地地下水模拟中应用较广,尤其是处理源汇项变化问题时效果较好;3参数敏感性与模型不确定分析及后续检查验收在相关工作中不可忽视。正确认识和处理污染场地地下水数值模拟中的关键问题,可为污染场地地下水调查评估、修复与治理工作的有效开展提供科学保障。  相似文献   

9.
针对地下水污染的数值模拟及污染预测问题,以迁安市某项目为例,建立了厂区及邻近地区地下水渗流模型和溶质运移模型,选用该项目的特征污染物Cr6+作为模拟因子,介绍了研究区水文地质条件,包括厂区位置及地形地貌、场地水文地质条件和场地水文地质试验,给出了建立地下水渗流数值模型,主要有地下水渗流数值模型和数值模型构建及识别验证,对地下水污染模拟预测,包括源强设定及模拟预测原则、地下水污染模拟预测和对地下水中Cr6+的浓度变化。  相似文献   

10.
基于特定场地污染概念模型的健康风险评估案例研究   总被引:1,自引:0,他引:1  
对某有机化工厂地下水下游方向拟建设的地铁站所在区域土壤及地下水开展污染调查,结果表明,拟建地铁站区域深层土壤及地下水均被1,2-二氯乙烷污染,其中,土壤样品最高浓度104.08 mg·kg-1,位于地表以下8.6 m深处;地下水样品最高浓度18 500μg·L-1.污染主要由位于上游的有机化工厂生产排污所致.本研究依据调查结果并结合地铁站的特殊结构设计构建了该场地特定的污染概念模型,推导了相应的风险计算公式用于计算站内人员的健康风险,并与基于通用污染概念模型建立的风险计算公式的评价结果进行比较.两种模型计算结果均表明该区域土壤及地下水中污染对未来地铁站工作人员造成的致癌风险将远高于目前普遍接受的风险水平(1×10-6),但前者计算的土壤和地下水对未来地铁工作人员造成的致癌风险要比后者分别高2倍和1.5倍.由此可见,对于具体的场地评价项目,应考虑场地的污染特性及未来建筑的结构特性对现有评估模型进行修正后进行健康风险评估,以避免因直接套用现有导则中的计算模型使最终评估结果偏离客观实际.  相似文献   

11.
蒸气入侵暴露情景下土壤气筛选值推导与比较   总被引:1,自引:1,他引:0  
采用J&E模型推导了典型蒸气入侵暴露情形下土壤气中ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值,并与US EPA(美国国家环境保护局)及美国各州的颁布值进行比较. 结果表明,具有致癌效应的苯、氯仿相同暴露情形下的筛选值低于非致癌效应的甲苯、1,1-二氯乙烯3~4个数量级,表明VOCs污染场地应重点关注致癌性污染物. 其中,浅层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为9.6×102、2.7×102、1.1×107、4.0×105μg/m3,工商业暴露情形下分别为4.6×103、1.3×103、6.3×107、2.4×106μg/m3. 深层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为1.1×103、3.1×102、1.2×107、4.5×105μg/m3,工商业暴露情形下分别为5.2×103、1.5×103、7.1×107、2.7×106μg/m3. 筛选值大小的决定因素包括污染物的室内允许浓度、土壤气衰减系数及建筑物参数. 浅层与深层土壤气中各污染物筛选值无明显差异,但与US EPA及美国各州的颁布值差异较大,这主要是由污染物室内允许浓度及衰减系数确定方法的不同所致. 浅层土壤气平均衰减系数为2.3×10-4,与深层土壤气平均衰减系数(2.0×10-4)无明显差异,但均低于US EPA对应经验值〔0.1(浅层)、0.01(深层)〕2~3个数量级. 在不考虑吸附及生物降解时,污染源上方清洁土壤对污染物的衰减作用不明显.   相似文献   

12.
危险废物贮存的地下水环境健康风险评价   总被引:2,自引:0,他引:2  
借鉴美国EPACMTP模型和健康风险评价模型,建立了一种危险废物贮存时,其所含有的污染物通过浸出进入地下水后对目标敏感点处的受体所造成的地下水环境健康风险的评价方法。在此基础上,以电镀污泥为例,评价了其作为一般工业固体废物进行贮存管理时的地下水环境健康风险以验证该方法的有效性。结果表明,该方法需要参数少且计算简单;电镀污泥中的主要污染组分(Ni、Mn和Cr6+)在贮存过程中所引起的目标敏感点处的地下水环境健康非致癌风险为169.33(分别为Ni-118.60、Mn-50.11、Cr6+-0.62),远大于美国标准中非致癌的可接受风险(1.00);就该电镀污泥贮存对目标敏感点处产生的地下水环境健康风险而言,其不能作为一般工业固体废物进行贮存管理。  相似文献   

13.
选择某废弃加油站场地为研究对象,通过采集分析土壤和地下水样品中的铅(Pb)、总石油烃(TPH)、多环芳烃(PAHs)、苯系物(BTEX)、甲基叔丁基醚(MTBE),分析了污染物在该区域地下环境中的迁移和分布特征.测试结果表明:场地包气带和含水层介质岩性以砂质粉土、粘质粉土和粉质粘土为主,土壤样品中总石油烃(C < 16)和苯均存在超标现象;垂向污染物高浓度值多出现在地下水面附近,其中上层滞水区总石油烃和苯大面积超标,潜水中总石油烃(C < 16)、苯及MTBE超标,承压水尚未被污染.在分析目前石油类污染场地修复技术的基础上,结合场地的实际条件,建议土壤和地下水的修复主要采用异位修复技术.  相似文献   

14.
李霄  都基众  张哲  王晓光  崔健  柴璐 《环境科学研究》2013,26(11):1162-1170
为研究有机组分在地下水中的运移规律及影响因素,并预测水质的破坏程度,利用数值模拟方法建立浑河中游区域特征有机污染组分1,2-DCA(1,2-二氯乙烷)的溶质运移模型,分析1,2-DCA在浑河中游地下水中的运移规律,并预测了其对地下水水质的影响. 细河与浑河中1,2-DCA的补给浓度(以ρ计)分别为4.50和6.40μg/L,预测期为10a,在运移模型中考虑弥散、吸附、降解作用的影响. 模拟结果显示,预测期内1,2-DCA在细河污染区的最大影响面积为1.80km2,峰值浓度(以ρ计)为3.50μg/L,污染物向北西方向运移;在浑河污染区的最大影响面积为3.78km2,峰值浓度为5.00μg/L,污染物向西南方向运移,表明污染物对地下水水质影响程度较低. 预测初期的200d内,吸附及生物降解的共同作用使细河、浑河污染晕中心的ρ(1,2-DCA)分别下降了0.12、0.10μg/L;随后,对流-弥散作用成为溶质运移的主要驱动力,并且使1,2-DCA的污染程度持续增强;黏土对1,2-DCA的运移具有阻滞作用,1,2-DCA在细河污染晕的扩散幅度略低于浑河.   相似文献   

15.
滹沱河冲洪积扇地下水中酞酸酯的污染现状与分布特征   总被引:1,自引:0,他引:1  
昌盛  赵兴茹  刘琰  耿梦娇  乔肖翠 《环境科学》2016,37(8):3041-3048
2014年9月采集石家庄地区滹沱河冲洪积扇地下水水样,采用气相色谱-质谱法测定了US EPA优先控制的6种酞酸酯(PAEs),对PAEs分布特征与风险进行了分析.结果表明,研究区内51个点位仅1个点位未检出PAEs,检出的ΣPAEs范围为nd~28 873.1 ng·L~(-1),与国内其他研究区相比,研究区地下水中PAEs污染水平较重.PAEs及各组分的空间分布存在显著差异.3个地下水单元PAEs的平均污染水平总体表现为山间沟谷河谷裂隙孔隙水单元(G1)滹沱河冲洪积扇扇顶部孔隙水单元(G2)滹沱河冲洪积扇扇中部孔隙水单元(G3).在G2、G3单元共计39个点位中,有23个点位地下水中的PAEs以邻苯二甲酸甲酯(DMP)为主,而其余点位均因临近周边污染源,地下水中PAEs含量较高,且以邻苯二甲酸(2-乙基己基)酯(DEHP)、邻苯二甲酸丁酯(DBP)为主.研究区人群饮用受PAEs污染地下水的总非致癌风险指数和总致癌风险指数范围分别为7.6×10-9~1.1×10-2、nd~1.2×10-6,均小于US EPA推荐的可接受的水平,风险较小.  相似文献   

16.
氟化工园区及周边地下水健康风险及脆弱性评价   总被引:1,自引:0,他引:1  
以阜新市某氟化工园区为研究对象,对园区及周边地下水样品中的Cr、As、Cu、Hg、Mn及F 6种元素分季节进行测定分析,采用美国环保署(US EPA)推荐的人体健康风险评价模型对重金属Cr、As、Cu、Hg、Mn及F进行地下水环境的人体健康风险评价,并应用DRASTIC模型评价该区域地下水的脆弱性.结果表明,研究区地下水受到重金属和氟化物的污染.健康风险评价表明,总致癌风险数量级在10-5~10-4之间,处于Ⅱ~Ⅳ级风险评价标准区间,总非致癌风险大于1,经饮水摄入途径引起的非致癌危害比皮肤接触途径高3~4个数量级.脆弱性评价表明,研究区的脆弱性指数DI范围为4.30~5.91,整体脆弱性处于Ⅲ级中等脆弱性水平.  相似文献   

17.
于云江  杨彦 《中国环境科学》2013,33(8):1487-1494
对松花江流域吉林段某区浅层地下水进行采样监测,并筛选流域特征污染物包括有机污染物:芴、蒽、八氯联苯、芘、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、茚(1,2,3-cd)芘、四氯联苯、五氯联苯、硝基苯、α-六氯环己烷、β-六氯环己烷、γ-六氯环己烷、七氯、p,p'-DDD、O,O-二甲基-O-2,2-二氯乙烯磷酸酯,重金属污染物:Cr、Cd、Pb、Hg,共21种,采用US EPA推荐的健康风险评价“四步法”,对研究区人群经口途径健康风险进行科学评估.结果表明:∑PCBs、七氯、滴滴涕、O,O-二甲基-O-2,2-二氯乙烯磷酸酯、硝基苯和Hg、Cr、Cd、Pb均未超出相关标准.∑PAHs低于报道的∑PAHs水平,芴浓度最高,六氯环己烷总量超标;研究区地下水污染物成人经口暴露总剂量为2.79×10-4mg/(kg×d),儿童为5.34×10-5mg/(kg×d),成人经口暴露剂量是儿童的5.23倍.成人和儿童经口暴露剂量中Cr的贡献率均最高分别为46.67%、42.82%,其次是β-六氯环己烷分别为27.29%、25.15%;采用Arcgis 9.3软件的插值运算功能,估算流域成人和儿童的健康风险,生成健康风险图,可以从地域上发现,流域人群非致癌风险由北向南呈现递减趋势,松花江两岸非致癌风险波动不大,上游风险大于下游风险;人群致癌风险总体趋势不明显.人群致癌风险高于非致癌风险,成人健康风险水平均高于US EPA推荐的最大可接受风险水平1.0×10-4,儿童健康风险水平仅小部分区域高于1.0×10-4.  相似文献   

18.
危险废物填埋处置的地下水环境健康风险评价   总被引:7,自引:1,他引:6       下载免费PDF全文
基于美国EPACMTP模型和健康风险评价模型,建立了一种危险废物填埋处置地下水环境健康风险评价方法.在此基础上,以电镀污泥为例,评价了其进入危险废物填埋场和一般工业固体废物填埋场处置的地下水环境健康风险,以验证该方法的有效性.结果表明,该方法需要参数少且计算简单;电镀污泥中的污染组分(Ni、Mn和Cr6+)进入危险废物填埋场和一般工业固体废物填埋场中处置所引起的目标敏感点处的地下水环境健康非致癌风险分别为10.20×10-4和0.81×10-1,两者均小于美国标准中非致癌的可接受风险水平(1.00),表明该电镀污泥进入上述填埋场引起的地下水环境健康风险不明显;就该电镀污泥填埋处置对目标敏感点处产生的地下水环境健康风险而言,其可以进入一般工业固体废物填埋场处置.  相似文献   

19.
为调查滹沱河冲洪积扇地下水中多环芳烃(PAHs)的污染状况,采用气相色谱-质谱法对该区16种US EPA优先控制的PAHs进行了分析,并对PAHs的污染水平,空间分布,来源与饮水健康风险进行了调查与评估.结果表明,51个点位中仅有2个点位未检出PAHs, PAHs的浓度范围为未检出~334.3ng/L,平均值为58.0ng/L,低于国内报道的其他地区的污染水平.研究区岗黄水库之间河谷裂隙孔隙水单元(G1),滹沱河冲洪积扇扇顶部孔隙水单元(G2),滹沱河冲洪积扇扇中部孔隙水单元(G3)3个水文地质单元PAHs平均浓度分别为215.2ng/L, 9.8ng/L,9.2ng/L, 其中G1以3~4环PAHs为主,而G2, G3以2~3环PAHs为主.分子比值法污染源解析表明,G1单元地下水PAHs污染源主要为煤与生物质燃烧,而G2, G3单元污染源主要为石油制品.采用US EPA推荐的方法对研究区地下水饮水健康风险进行评价,发现研究区G1单元PAHs饮水终生致癌风险平均值为2.1×10-5,超过可接受水平,应当引起关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号