首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对现有城市污水处理厂普遍面临进水碳源不足影响脱氮效率的问题,通过调控A2/O系统曝气分区比例、溶解氧(DO)浓度和污泥龄(SRT)构建短程硝化耦合厌氧氨氧化系统,以研究不同工况下该系统的脱氮性能、脱氮途径和微生物种群结构的变化情况.研究结果表明在低C/N进水(C/N=5)情况下,该系统具有稳定优良的脱氮性能.在140 d试验过程中,反应器经历了氨氧化细菌(AOB)、亚硝酸盐氧化细菌(NOB)共培养阶段(阶段Ⅰ)、AOB筛分阶段(阶段Ⅱ~Ⅲ)与厌氧氨氧化细菌(AnAOB)富集阶段(阶段Ⅳ),系统的脱氮途径也由初始的全程硝化反硝化逐步转化为短程硝化耦合厌氧氨氧化脱氮;系统的脱氮效率在阶段Ⅳ达到最佳状态,此时该系统出水NH4+-N和TN的平均浓度分别为1.20 mg·L-1和7.03mg·L-1,其对应的去除率分别为97.69%和87.83%;Illumina MiSeq测序结果表明,短程硝化耦合厌氧氨氧化的系统中NitrosomonasNitrosospira这两类AOB的富集和Nitrospira、NitrococcusNitrobacter这3类NOB的淘洗是系统发生短程硝化的主要原因,Candidatus KueneniaCandidatus Jettenia这两类AnAOB的富集是系统发生厌氧氨氧化的关键所在,对实现深度脱氮具有重要作用.  相似文献   

2.
针对污水处理厂冬季生物脱氮效率低、出水水质不达标的问题,从活性污泥中分离出1株耐低温异养硝化-好氧反硝化菌株Glutamicibacter sp.WS1.采用PCR技术扩增该菌株的脱氮功能基因,研究其对不同氮源的低温脱氮效能,通过单因素实验探究环境因子对其低温好氧反硝化性能的影响,并利用氮平衡解析其氮代谢路径.结果表明,菌株WS1含有氮代谢相关的功能基因amoAnapAnirSnirK;在15℃低温条件下,菌株WS1在以NH4+-N、NO3--N、NO2--N+NO3--N和NH4+-N+NO3--N为氮源时,对各无机氮的去除率分别为100%、98.10%、99.87%+100%和100%+94.92%;菌株WS1的最佳反硝化条件:柠檬酸钠为碳源、C/N为16、pH为8、ρ(DO)为4.5~6.8 mg ·L-1和温度为30℃;在低温(15℃)和低C/N (10)条件下,菌株WS1对NO3--N的去除率达到92.50%;异养硝化-好氧反硝化/好氧反硝化和同化作用是菌株WS1去除不同氮源底物的主要途径,其中大部分的无机氮(47%~56%)通过异养硝化-好氧反硝化/好氧反硝化作用转化为了气态氮.菌株WS1在低温污水脱氮领域具有广阔的应用前景.  相似文献   

3.
异养硝化细菌Pseudomonas putida YH的脱氮特性及降解动力学   总被引:2,自引:0,他引:2  
汪旭晖  杨垒  任勇翔  陈宁  肖倩  崔坤  郦丹 《环境科学》2019,40(4):1892-1899
针对传统污水处理过程脱氮处理效率低、工艺流程复杂、抗高氨氮冲击负荷能力弱等问题,以具有高效脱氮能力的异养硝化细菌Pseudomonas putida YH为研究对象,开展其生理生化特性、脱氮性能、影响因子及动力学分析.结果表明,菌株YH具有高效的异养硝化能力,氨氮最大去除率达99.1%,约53%的去除总氮转化为胞内氮,反应过程仅有少量的硝化中间产物积累;菌株YH还能够在好氧条件利用亚硝酸盐和硝酸盐进行生长代谢,最大去除率分别为99.8%和99.5%.同时,结合反硝化功能基因napAnirK的PCR成功扩增,进一步证明菌株YH具有好氧反硝化特性;菌株YH生长特性与Logistic模型相匹配(R2>0.99),氮素降解过程则符合Compertz模型(R2>0.99),拟合所得氮素最大转化速率Rm为氨氮 > 硝氮 > 亚硝氮,迟滞时间t0为硝氮 > 亚硝氮 > 氨氮;异养硝化最佳的条件是碳源为琥珀酸钠、C/N=10、T=30℃、r为160~200 r·min-1以及pH=7,最优条件下平均氨氧化速率和Rm分别为8.35 mg·(L·h)-1和16.71 mg·(L·h)-1;菌株YH能够适应较宽范围的氨氮负荷,在高氨氮浓度下(1000 mg·L-1)仍具有较高的异养硝化能力,体现了菌株YH具有处理高氨氮废水的潜能.  相似文献   

4.
异养硝化细菌Bacillus sp. LY脱氮性能研究   总被引:1,自引:1,他引:0  
何霞  赵彬  吕剑  何义亮  靳强  张文英 《环境科学》2007,28(6):1404-1408
研究了异养硝化细菌Bacillus sp. LY的脱氮性能.结果表明,Bacillus sp. LY是1株具有脱氮能力的异养硝化细菌.在NH+4-N浓度分别为40、80和120 mg/L 3种情况下,120 h反应后,氨氮的去除率分别是100%、85.7%、73.7%,总氮的去除率分别是76.6%、53.4%、64.8%,在菌液初始浓度相同的情况下,随着NH+4-N浓度的增加,细菌的硝化速率以及脱氮速率呈现下降的趋势.有机物浓度是影响Bacillus sp. LY脱氮性能的重要因素,低的有机物浓度会阻碍细菌脱氮性能的发挥,中的有机物浓度会促进细菌脱氮性能的发挥,使体系的脱氮效果达到最佳,高的有机物浓度并不能再次提升细菌的脱氮性能.在Bacillus sp. LY作用下,有机氮经过氨化作用生成氨氮,通过2条可能的途径转化为氮气.1条途径是氨氮先硝化生成亚硝酸盐与硝酸盐,然后反硝化生成氮气.另1条途径是氨氮被氧化生成羟胺,然后脱氢生成氧化亚氮并进一步转化为氮气.这些研究可为开发新型高效生物脱氮工艺提供参考.  相似文献   

5.
城市污水处理厂缺氧池短程反硝化现象及影响因素研究   总被引:1,自引:0,他引:1  
调研了北方某城市污水处理厂缺氧池亚硝态氮积累的现象.该污水处理厂采用传统厌氧/缺氧/好氧(A/A/O)工艺,在缺氧池中存在稳定的短程反硝化过程,且缺氧池中亚硝态氮积累率最高可达88.4%.16S rRNA高通量测序分析表明Saccharibacteria_genera_incertae_sedisThauera可能是导致该厂缺氧池亚硝态氮积累的主要菌种,而短程反硝化现象出现的主要原因可能为外加碳源乙酸钠和系统较高的pH值.取活性污泥在COD/NO3--N为2~5条件下进行反硝化批次试验,结果表明硝态氮的还原速率均高于亚硝态氮的还原速率,且最大硝态氮到亚硝态氮的转换率均在50%左右.但碳源充足时,积累的NO2-会在NO3-被还原完后继续发生还原反应,从而导致最终亚硝态氮积累效果变差.本研究,以乙酸钠为碳源,COD/NO3--N为3可使反硝化过程获得最高亚硝态氮积累.因此,控制合适COD/NO3--N或缺氧反应时间是短程反硝化工艺运行的关键控制参数.本研究可为实际污水处理厂构建短程反硝化并进一步耦合厌氧氨氧化技术提供参考.  相似文献   

6.
曝气生物滤池中的亚硝酸盐积累及其影响因子   总被引:38,自引:4,他引:34  
马军  邱立平 《环境科学》2003,24(1):84-90
通过模型试验研究了曝气生物滤池脱氮过程中的亚硝酸盐积累现象,考察了运行条件对亚硝酸盐积累的影响.试验结果表明,曝气生物滤池在滤速1~2m/h、气水比3:1、水温20.5℃~26.5℃、进水氨氮负荷0.26~0.62kg/(m3·d)、总氮负荷0.28~0.63kg/(m33·d)和0.18~0.42kg/(m3·d)反应器内反应液和处理水连续监测结果、反应器内含氮化合物空间分布分析以及微生物数量及活性测定结果表明,反应器中出现了明显的亚硝酸盐积累现象,表现出显著的短程硝化反硝化特征.初步分析探讨了亚硝酸盐积累的形成机理和运行条件对亚硝酸盐积累的影响,认为反冲洗过程是最主要的影响因素,而曝气生物滤池的结构特征和运行方式是其能够出现亚硝酸盐积累,并进行短程硝化反硝化脱氮的主要原因.  相似文献   

7.
王文琪  李冬  高鑫  张杰 《环境科学》2021,42(8):3858-3865
为了探究亚硝酸盐生成方式对短程硝化反硝化除磷颗粒系统的影响,采用2组同规格SBR反应器分别在连续和间歇曝气方式下使亚硝酸盐连续生成和间歇生成,考察其运行过程中脱氮除磷效果、污泥物理特性和微生物群落结构.结果表明,亚硝酸盐间歇生成后随即消耗,具有更好和更稳定的脱氮除磷性能,特别在TN去除上,第72 d后TN平均去除率为92.07%.碳源利用效率(以P/COD计)集中在0.21~0.22mg·mg-1,碳源利用充分,进一步促进反硝化除磷.颗粒粒径分布集中,大小均匀,具有规则的形状和清晰的边界.微生物群落分析表明,亚硝酸盐间歇生成的系统微生物群落丰富度和多样性更高,同时富集了更多DPAOs菌属(DechloromonasPseudomonas),与Nitrosomonas共同作用使短程硝化与反硝化除磷达到动态平衡,实现系统稳定运行.  相似文献   

8.
从天然河水中富集分离出8株异养硝化-好氧反硝化(HN-AD)菌株.将单菌株根据其自身的种属类别及脱氮性能复配成5种由不同菌株构成的菌剂,优选出脱氮效果最佳的复配菌剂-2,其包括6株菌株,分别为Pseudomonas stutzeri MR1,Pseudomonas sp. MR2,Pseudomonas sp. MR3,Pseudomonas balearica MR4,Klebsiella variicola MR6和Catellibacterium terrae MR8.将复配菌剂-2投加至CODCr/TN比分别为20和5的河水中,其对NO3--N的去除率分别为87.1%和97.5%,期间无NO2--N积累;对NH4+-N去除效果在第1 d分别达到96.6%和57.6%.复配菌剂可以获得对河水较高的反硝化脱氮效率,并可以强化河水中NH4+-N的去除,对实际河水的脱氮净化具有较强的应用潜能.  相似文献   

9.
基于硫自养反硝化作用,寻求一种经济、快速、高效地污水脱氮工艺,采用硫磺/硫铁矿组合进行自养反硝化脱氮试验,以低C/N市政污水为处理对象,分别考察温度,硫磺与硫铁矿体积比和HRT等理化因素对反应器脱氮性能的影响.结果表明,在进水TN质量浓度约40 mg·L-1条件下,1号反应器最佳HRT为2.5 h,TN去除率平均稳定在72.2%,出水TN约10.55 mg·L-1;2号反应器最佳HRT为3.5 h,TN平均去除率约67.8%,出水TN平均稳定至12.90 mg·L-1;3号反应器最佳HRT为3.5 h,TN平均去除率60.6%,出水TN稳定在15.00 mg·L-1左右.硫磺/硫铁矿自养反硝化系统比硫铁矿自养反硝化系统启动快;该系统脱氮效率随着硫磺与硫铁矿体积比减小而降低;该系统脱氮性能对温度的变化并不敏感,脱氮性能优于单独以硫铁矿为硫源的自养反硝化系统;系统中硫自养反硝化过程的主要功能菌属是SulfurimonasThiobacillus,在3个反应器所占比例为1号 > 2号 > 3号.  相似文献   

10.
反硝化和厌氧氨氧化是湖泊的重要脱氮过程,对维持湖泊氮素平衡具有重要意义.为了解大型富营养化浅水湖泊——太湖反硝化和厌氧氨氧化速率的时空变化及其影响因素,于2020年春季和夏季选择太湖的梅梁湾、贡湖湾、竺山湾、大浦口、胥口湾和湖心区采集无扰动泥柱,利用15N同位素示踪技术,在恒温水浴条件下开展反硝化和厌氧氨氧化流动培养实验.结果表明,春季太湖不同湖区反硝化和厌氧氨氧化速率的空间分布差异较大,反硝化速率为(27.74±8.45)~(142.43±35.54)μmol·(m2·h)-1,厌氧氨氧化速率为(2.35±1.06)~(17.95±8.66)μmol·(m2·h)-1,厌氧氨氧化对脱氮的贡献率相对较低,为(7.82±1.71)%~(11.20±1.53)%.夏季竺山湾脱氮速率最高,反硝化和厌氧氨氧化速率分别高达(165.68±62.14)μmol·(m2·h)-1和(33.56±10.66)μmol·(m2·h)-1,厌氧氨氧化对脱氮贡献率达到了(16.85±1.78)%,其他湖区的脱氮速率相对较低,且没有十分显著的空间差异,反硝化和厌氧氨氧化速率分别为(25.47±10.46)~(42.50±16.46)和(2.65±0.94)~(5.95±2.65)μmol·(m2·h)-1,厌氧氨氧化对脱氮的贡献率为(13.62±1.95)%~(7.24±1.78)%.总体来说,夏季反硝化速率要普遍低于春季,而厌氧氨氧化速率相对于春季并无明显下降.统计分析表明,反硝化和厌氧氨氧化速率与底物氮浓度呈显著的相关性(P<0.01),说明氮浓度是不同湖区脱氮速率差异的主要控制因素.此外,厌氧氨氧化对脱氮的贡献率与叶绿素a的浓度呈现显著的正相关性(P<0.05),说明蓝藻水华对厌氧氨氧化脱氮贡献率的变化有很大的影响,具体的影响机制还有待进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号