首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青岛春节期间大气污染特征及烟花燃放一、二次贡献分析   总被引:2,自引:2,他引:0  
方天歌  姚小红  孟赫  陈春强 《环境科学》2020,41(10):4345-4354
我国北方地区冬季采暖期大气污染事件频发,期间硝酸盐成为促进PM2.5增加的主要因素.然而在烟花燃放期间,硫酸盐的累积却强于硝酸盐,形成不同的污染特征.对春节期间(2019年2月2~10日)青岛近郊在线离子色谱观测数据,结合国控自动监测站数据进行综合分析.结果表明,研究期间观测到大气颗粒物累积事件、沙尘过境事件和烟花燃放事件.烟花燃放高峰期,其对PM2.5和PM10的一次贡献率分别为69.8%和63.8%.相比颗粒物累积期间硝酸盐有更明显的累积,硫酸盐在烟花燃放期间先于硝酸盐生成,并存在更强的累积.分离得到烟花燃放的一次贡献因子n(SO42-)/n(K+)和n(NO3-)/n(K+)特征摩尔比分别为1.2和1.3;利用该比值估算得到对SO42-和NO3-二次贡献因子,在较稳定的气象条件下分别为一次贡献因子的2.1倍和1.6倍;但在强的干冷空气过境时,二次贡献因子大幅降低,与一次贡献因子相当.  相似文献   

2.
成都市冬季相对湿度对颗粒物浓度和大气能见度的影响   总被引:7,自引:5,他引:2  
刘凡  谭钦文  江霞  蒋文举  宋丹林 《环境科学》2018,39(4):1466-1472
利用成都市城区2015年12月的连续在线观测数据,如相对湿度(RH)、能见度、颗粒物(PM10、PM2.5和PM1)浓度、气态污染物(SO2和NO2)浓度以及PM2.5中SO42-和NO3-浓度,探讨RH对颗粒物浓度和大气能见度的影响.结果表明,高颗粒物浓度和高RH协同作用导致低能见度事件.观测阶段,PM2.5在PM10中的平均比重为64%,表明成都市冬季细颗粒物污染严重;随着RH增加,PM2.5/PM10显著增加,表明高RH会加重细颗粒物污染.随着PM2.5浓度增加,能见度呈幂指数下降;在相同PM2.5浓度下,RH越高,能见度越低.当颗粒物浓度较低时,RH对能见度的影响作用较强;当颗粒物浓度较高时,大气消光主要由PM2.5浓度控制,RH对能见度的影响减弱.当RH大于70%时,硫氧化率(SOR)和氮氧化率(NOR)的均值分别从0.27和0.11(RH小于40%)增长至0.40和0.19,表明较高RH对二次硫酸盐和硝酸盐的生成有显著的促进作用,二次硫酸盐和硝酸盐单独或协同影响空气质量.  相似文献   

3.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

4.
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO_2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.  相似文献   

5.
Sulfate, nitrate and ammonium(SNA) are the dominant species in secondary inorganic aerosol, and are considered an important factor in regional haze formation. Size-fractionated aerosol particles for a whole year were collected to study the size distribution of SNA as well as their chemical species in Shanghai. SNA mainly accumulated in fine particles and the highest average ratio of SNA to particulate matter(PM) was observed to be 47% in the fine size fraction(0.49–0.95 μm). Higher sulfur oxidation ratio and nitrogen oxidation ratio values were observed in PM of fine size less than 0.95 μm. Ion balance calculations indicated that more secondary sulfate and nitrate would be generated in PM of fine size(0.49–0.95 μm). Sulfur K-edge X-ray absorption near-edge structure(XANES) spectra of typical samples were analyzed. Results revealed that sulfur mainly existed as sulfate with a proportion(atomic basis) more than 73% in all size of PM and even higher at 90% in fine particles. Sulfate mainly existed as(NH4)2SO4 and gypsum in PM of Shanghai. Compared to non-haze days, a dramatic increase of(NH4)2SO4 content was found in fine particles on haze days only, which suggested the promoting impact of(NH4)2SO4 on haze formation. According to the result of air mass backward trajectory analysis, more(NH4)2SO4 would be generated during the periods of air mass stagnation. Based on XANES, analysis of sulfate species in size-fractionated aerosol particles can be an effective way to evaluate the impact of sulfate aerosols on regional haze formation.  相似文献   

6.
In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42−) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3) were observed in winter and spring. The mass concentrations of Cl and K+ were higher in winter. Moreover, NO3 increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.  相似文献   

7.
Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO42 −) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO42 − transformation and S gas emissions, two SO42 −-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO42 − by 51% and 61% in S1 and S2, respectively. The disappeared SO42 − was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for < 0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO42 − into undissolved form, reduced soil SO42 − by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO42 −, liming stimulates the conversion of dissolved SO42 − into undissolved form, probably due to the precipitation with calcium.  相似文献   

8.
The oxidation of SO2 is commonly regarded as a major driver for new particle formation (NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term (duration > 3 hr) and short-term (duration <1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates (J30) showed a moderate correlation with the concentration of sulfuric acid ([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events (Category I) (R2 = 0.66). The exponent in the fitting line of J30 ~ [H2SO4]n in these events was 1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events, leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events (Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of >10 nm new particles.  相似文献   

9.
The oxidation of SO2 is commonly regarded as a major driver for new particle formation (NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term (duration > 3 hr) and short-term (duration < 1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates (J30) showed a moderate correlation with the concentration of sulfuric acid ([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events (Category I) (R2 = 0.66). The exponent in the fitting line of J30 ~ [H2SO4]n in these events was 1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events, leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events (Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of > 10 nm new particles.  相似文献   

10.
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using MnSO4 (OMS-2-SO4) and Mn(CH3COO)2 (OMS-2-AC) as precursors. SO42 −-doped OMS-2-AC catalysts with different SO42 − concentrations were prepared next by adding (NH4)2SO4 solution into OMS-2-AC samples to investigate the effect of the anion SO42 − on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO42 − doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO42 − (SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO42 − species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO42 − species in OMS-2-SO4 samples.  相似文献   

11.
Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter = 1.6 × OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2 + were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%–96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.  相似文献   

12.
Atmospheric particles(total suspended particles(TSPs); particulate matter(PM) with particle size below 10 μm, PM10; particulate matter with particle size below 2.5 μm, PM2.5)were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5were identified by the chemical mass balance(CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5was the main component of PM210, while the presence of PM10–100was relatively weak. SO-4and NO-3concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5were obviously higher during the heating period. Organic carbon(OC) in the heating period was 2–5 times higher than in the non-heating period. Elemental carbon(EC) did not change much. OC/EC ratios were 8–11 during the heating period, which was much higher than in other Chinese cities(OC/EC: 4–6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5were higher than in PM10, because PM2.5has a higher ability to absorb toxic substances. Thus PM2.5pollution is more significant regarding human health effects in the heating period.  相似文献   

13.
During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium. In average, these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC), 19% (SO42-), 12% (NO3-), 8.4% (NH4+) and 3.7% (EC), to PM2.5 mass. A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations. Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate, particulate organic matter, ammonium nitrate and EC in average contributed about 32%, 28%, 20% and 6% to the light extinction coefficients, respectively.  相似文献   

14.
Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing various anions were investigated. The influences of anion concentration and valence on the aggregation size, zeta potential and aggregation kinetics were individually investigated. Results showed that the zeta potential decreased from 19.8 to − 41.4 mV when PO43 − concentration was increased from 0 to 50 mg/L, while the corresponding average size of nano-TiO2 particles decreased from 613.2 to 540.3 nm. Both SO42 − and NO3 enhanced aggregation of nano-TiO2 in solution. As SO42 − concentration was increased from 0 to 500 mg/L, the zeta potential decreased from 19.8 to 1.4 mV, and aggregate sizes increased from 613.2 to 961.3 nm. The trend for NO3 fluctuation was similar to that for SO42 − although the range of variation for NO3 was relatively narrow. SO42 − and NO3 accelerated the aggregation rapidly, while PO43 − did so slowly. These findings facilitate the understanding of aggregation and dispersion mechanisms of nano-TiO2 in aqueous solutions in the presence of anions of interest.  相似文献   

15.
利用SPAMS研究石家庄市冬季连续灰霾天气的污染特征及成因   总被引:21,自引:15,他引:6  
周静博  任毅斌  洪纲  路娜  李治国  李雷  李会来  靳伟 《环境科学》2015,36(11):3972-3980
2014年11月18~26日石家庄市发生了连续的灰霾天气.利用位于石家庄市大气自动监测站(20 m)的单颗粒气溶胶质谱仪(SPAMS)分析了细颗粒物的化学组成,根据石家庄市大气污染物排放源谱库对主要成分进行了来源解析,并结合颗粒物质量浓度和气象条件研究了该地区冬季灰霾天气成因.结果表明,石家庄市大气细颗粒物来源分为7类,各源示踪离子:燃煤源为Al,工业源为OC、Fe、Pb,机动车尾气源为EC,扬尘源为Al、Ca、Si,生物质燃烧源为K和左旋葡聚糖,纯二次无机源为SO-4、NO-2和NO-3,餐饮源为HOC.灰霾期间大气中主要含有OC、HOC、EC、HEC、ECOC、富钾颗粒、矿物质和重金属等8类颗粒,其中OC和ECOC颗粒最多,分别占到总数的50%和20%以上,OC颗粒主要来自燃煤和工业工艺,ECOC颗粒主要来自燃煤和机动车尾气排放.灰霾发生时含有NH+4、SO-4、NO-2和NO-3等二次离子的颗粒物占比升高,其中含NH+4颗粒增幅最大;EC、OC与NO-3、SO-4、NH+4在灰霾天气下的混合程度均比干净天气高,其中与NH+4的混合程度加剧最为明显.冬季采暖期煤炭的大量燃烧、医化行业工艺过程及机动车尾气等污染源排放的一次气态污染物(SO2、NOx、NH3、VOCs)和一次颗粒物在静稳天气中难以扩散而迅速累积,气态污染物发生二次转化形成硝酸铵、硫酸铵,而颗粒物之间通过碰撞形成二次颗粒物并发生不同程度的混合,从而导致大气能见度下降,以上是石家庄市冬季灰霾形成的主要原因.  相似文献   

16.
利用高分辨率飞行时间气溶胶质谱仪(HR-ToF-AMS)在华北背景地区——上甸子区域大气本底站开展亚微米气溶胶(NR-PM_1)化学组分及粒径分布的连续观测实验,观测时段为2015年10月17日至2016年1月27日,涵盖了秋、冬两季.结果表明,整个观测期间NR-PM_1平均质量浓度为25.2μg·m~(-3),PM_1中有机物占绝对优势,硝酸盐占的比例高于硫酸盐.各化学组分平均粒径分布以积聚模态为主,其中,有机物峰形最宽,峰值粒径最小,硝酸盐峰值粒径最大,表明有机物在颗粒物形成、增长初期及老化阶段均有贡献,硝酸盐在气溶胶粒子老化过程中更易于增长为大粒子.有机物种元素特性分析结果显示,秋、冬季有机气溶胶平均氧碳比(O/C)和氢碳比(H/C)为0.58和1.58,OM/OC达1.91,有机气溶胶的氧化程度高于城市站点平均水平.在华北地区污染环境下,有机气溶胶演变途径Van Krevelen拟合曲线斜率为-0.21,其老化潜质和速率较珠三角地区和欧美地区城市要慢.对比污染时段和清洁时段化学组成特征发现,在污染时段,硝酸盐质量浓度及其对PM_1的贡献率超过硫酸盐,有机物氧化程度明显高于清洁时段.后径向轨迹气团分析结果显示,污染时段气团来向较为复杂,来自西部,南部以及东北部气团均有贡献,清洁时段,主要受来自西伯利亚洁净空气的影响,对站点污染物扩散作用明显.  相似文献   

17.
利用2020年春节期间(1月21~28日)广州市21个空气质量监测站气象和空气污染物数据及其中4个监测点位的单颗粒气溶胶质谱仪(single particle aerosol mass spectrometer,SPAMS)数据,研究烟花爆竹燃放对广州市及11个行政区空气质量的影响,并基于SPAMS建立了烟花爆竹快速溯源方法,分析了烟花爆竹源单颗粒化学成分.结果表明,烟花爆竹燃放对燃放区及禁止燃放区的空气质量都造成显著影响,广州市PM2.5、PM10和SO2质量浓度在除夕夜间迅速升高.烟花爆竹集中燃放时段(1月25日01:00~06:00),主要影响了增城区、白云区、黄埔区及天河区部分区域的空气质量.建立了基于SPAMS以Al+为示踪物及最快5 min时间分辨率的烟花爆竹快速溯源方法.烟花爆竹源颗粒主要颗粒类型是左旋葡聚糖、富钾和矿物质类颗粒.烟花爆竹源颗粒含有丰富的硝酸盐,但不利于铵盐的形成.  相似文献   

18.
利用武汉地区2014年秋、冬季在线离子色谱分析仪Marga监测所得的大气PM_(2.5)中水溶性离子数据和武汉市环境空气质量自动监测的细颗粒物数据,分析了武汉地区秋、冬季重污染和清洁过程的大气污染特征.结果表明,PM_(2.5)是武汉地区秋、冬季大气污染的首要污染物,无论是在清洁还是重污染过程中,NO_3~-、SO_4~(2-)和NH_4~+3种成分都是PM_(2.5)的主要无机成分.重污染过程中PM_(2.5)的平均浓度是清洁过程的4.5倍,而3种主要水溶性离子平均浓度增长至清洁过程的5~6倍,且有着显著的相关性,二次生成水溶性离子的污染已成为武汉秋、冬季大气污染的主要因素.Cl-在重污染过程中的浓度及与PM_(2.5)的相关系数显著增大,表明化石燃料燃烧等过程也对重污染的形成产生了较显著的作用,值得关注的是,K~+在重污染过程中的浓度及与PM_(2.5)的相关系数增大也验证了燃烧过程对重污染起到的贡献.硫氧化率和氮氧化率的分析结果表明,重污染过程中的二次转化要多于清洁过程,可能是非均相反应生成了二次污染的硫酸盐和硝酸盐.线性回归分析的方程系数研究表明,NH_4NO_3和(NH_4)_2SO_4可能是清洁和重污染过程中主要的盐类物质.NO_3~-/SO_4~(2-)的平均质量浓度比说明移动源对武汉地区秋、冬季二次污染的形成和发展已经起到越来越大的作用,特别是重污染过程中的影响更大.  相似文献   

19.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

20.
华楠  尚玥  谢鸣捷 《环境科学》2023,44(2):593-601
为了解新冠疫情期间极端减排情景下南京市PM2.5的化学组成和来源变化,对南京市2020年1~3月和2021年6~8月两次疫情管控前后PM2.5化学组分(水溶性无机离子、碳质组分和无机元素)的小时观测结果进行分析.结果表明,NO-3浓度在两次疫情管控期间比管控前分别下降52.9%和43.0%,高于NH+4(46.4%和31.6%)和SO42-(33.8%和16.5%).由于观测点位于交通干道附近,元素碳(EC)的下降幅度(35.4%和20.6%)高于有机碳(OC; 11.1%和16.2%).结合以上丰量组分特征比值的变化,推断疫情管控对交通排放的影响比工业活动更显著.各主要丰量组分浓度在疫情管控前后的连续变化过程表明,来自本地交通排放的NOx对PM2.5中NO-3的形成有重要贡献,并且是短期内本地PM2.5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号