首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
滴水湖水系表层沉积物中多氯联苯残留与风险评价   总被引:1,自引:0,他引:1  
于2012年,每2个月采集一次上海人工滩涂湖泊——滴水湖水系表层沉积物,对其多氯联苯(PCBs)的残留水平进行了检测和分析.结果表明,研究期间闸外引水河和闸内引水河沉积物中7种PCBs的总量各月间变化较大,且总体呈上升趋势,而滴水湖沉积物中其总量四季变化幅度不大;空间分布上,闸外引水河[(844.74±687.62)ng/g]>闸内引水河[(516.83±645.45)ng/g]>>滴水湖[(81.63±72.18)ng/g].研究区PCBs组成以六氯联苯和七氯联苯为主,其次为五氯联苯和三氯联苯.采用主成分分析法对PCBs进行源解析,结果显示:PCBs污染源中进口电容器中PCBs的迁移占43%,油漆添加剂污染占33%;国产电容器和变压器污染占11%.生态风险评估表明,闸外引水河和闸内引水河沉积物PCBs对生物体的暴露有严重威胁;滴水湖沉积物PCBs对生物体的暴露有一定的潜在威胁.与国内外研究相比,闸外引水河和闸内引水河属于严重污染水平,滴水湖属于中等污染水平,相关部门应加强污染监管.  相似文献   

2.
2016年7月于北江清远段采集21个水和表层沉积物样品,采用气相色谱质谱(GC-MS)法测定了样品中的PAHs(多环芳烃)含量,分析了北江水环境中PAHs的污染水平,并对其生态风险进行了评价.结果表明,水中ρ(∑PAHs)介于0.4~110.2 ng/L,表层沉积物中w(∑PAHs)(以干质量计,下同)在54.4~819.8 ng/g之间,平均值分别为41.7 ng/L和424.9 ng/g.与国内水体PAHs污染状况相比,北江清远段水中PAHs污染状况处于中低水平,而表层沉积物污染状况处于中等水平.运用特征比值法对PAHs来源进行分析表明,PAHs主要来源为石油泄漏、化石燃料燃烧.采用商值法对水中PAHs进行生态风险评价,∑PAHs和个别单体的最低风险浓度风险商值大于1.0而最高风险浓度风险商值小于1.0,处于中等污染水平;采用效应区间低、中值法对表层沉积物PAHs进行生态风险评价,仅个别点位表层沉积物中苊烯、蒽和二苯并[a,h]蒽超出生态效应低值,对生态环境潜在负面效应较小.研究显示,北江水和沉积物中PAHs潜在风险处于较低水平.   相似文献   

3.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   

4.
在渤海湾天津段潮间带及邻近区域的主要入海河流和近海采集86个表层沉积物样品,通过GC/MS对16种优控多环芳烃(PAHs)的含量进行分析,结果表明:潮间带44个样品的PAHs平均含量为(140.0±84.1)ng/g,与近海样品的PAHs含量[(161.6±38.7)ng/g, n=26]相当,但远低于河流样品的PAHs含量[(452.7±206.0)ng/g, n=13];潮间带样品的PAHs含量呈现“北区高南区低”(以天津港码头为界)的空间分布特征,与该区域沉积物粒度及黑碳和总有机碳的含量呈现显著的相关性;从PAHs的组成上可以显示潮间带沉积环境具有一定的特殊性;潮间带样品PAHs的BaP毒性当量含量平均为(24.5±21.1)ng/g;根据加拿大魁北克省海洋沉积物中PAHs的质量评估标准,渤海湾表层沉积物中PAHs的污染具有一定的生态风险.  相似文献   

5.
为掌握渤海湾天津段多条河流入海区和海滨旅游度假区的近岸海域表层(0~5 cm)沉积物中PAHs(多环芳烃)的污染状况,对该区域表层沉积物中16种US EPA(美国国家环境保护局)优先控制PAHs的分布特征及其来源进行了调查和分析,并评估了其潜在生态风险和概率致癌风险. 结果表明:渤海湾天津近岸海域表层沉积物中w(PAHs)(16种PAHs质量分数之和,以干质量计)为23.9~672.8 ng/g,平均值为228.1 ng/g. 表层沉积物中PAHs的污染程度与历史调查结果相比有所加剧,并且呈复合型污染,在天津港港区外海域主要为石油制品污染,在研究区域南部则主要源于燃煤和生物质的不完全燃烧. 风险评估结果表明,海河入海口附近和研究区域北部存在潜在生态风险;研究区域内概率致癌风险处于较低水平,∑7TEQBaP(7种强致癌PAHs的苯并芘毒性当量浓度之和)占∑16TEQBaP〔16种PAHs的苯并芘毒性当量浓度之和〕的96.8%,其中二苯并蒽的致癌风险最大,其次为苯并芘.   相似文献   

6.
于2009年6月分别采集辽河和太湖表层沉积物样品,测定了多环芳烃(PAHs)和有机氯农药(OCPs)的含量.结果表明,辽河表层沉积物中∑PAHs含量(干重)为120.8~22120ng/g,平均值为3281ng/g,处于较高的水平;太湖∑PAHs的含量为256.6~1709ng/g,平均值为829.0ng/g,处于中等水平.两采样区的PAHs以4环和5~6环为主,荧蒽含量最高,PAHs主要因热解产生.辽河和太湖表层沉积物中OCPs的含量均处于较低水平,且均以β-HCH为主.利用相平衡分配法建立了15种PAHs和8种OCPs的沉积物基准值,对沉积物中PAHs和OCPs进行了生态风险评估,结果显示辽河流域的浑河段均有∑PAHs、∑DDTs和∑HCHs超标点位,具有较大的生态风险;太湖流域未发现超标点位,沉积物中各类污染物中含量均未超过基准值,生态风险较小.  相似文献   

7.
研究了白洋淀表层沉积物中US EPA 16种优先控制的多环芳烃(PAHs)的分布特征和污染来源,其w(PAHs)为101.3~1 494.8 ng/g (平均值为353.0 ng/g),与国内其他的湖泊和河流相比,整体处于中等污染水平. 安州采样点沉积物中w(PAHs)最高,污染最严重;其次为小田庄、烧车淀、王家寨;污染较轻的采样点为枣林庄、光淀、圈头和端村. 在16种多环芳烃单体中,菲、荧蒽、芘、苯并[b]荧蒽所占比例较大. w(荧蒽)/w(芘)和w(菲)/w(蒽)2个比值显示, 白洋淀沉积物中多环芳烃的含量和分布受石化材料燃料、煤炭及薪柴燃烧影响较大. 风险评价表明,安州采样点表层沉积物对生物存在潜在危害,而其他采样点沉积物潜在风险处于较低水平.   相似文献   

8.
滴水湖及其鲫鱼体内PAHs分布特征与影响因素分析   总被引:1,自引:0,他引:1  
通过测定滴水湖水体、颗粒物和沉积物体系PAHs含量,探讨其分布与组成特征、影响因素及污染来源.结果表明,滴水湖水体中溶解态、颗粒态和沉积物中PAHs平均浓度分别为16.78ng/L、33.02ng/g和40.98ng/g.统计分析表明,水体酸碱度以及电导率与溶解态低环PAHs之间存在显著相关性,总有机碳(TOC)与沉积物中高环PAHs浓度之间存在显著相关性.溶解态的PAHs来源主要表现为草、木和煤的高温燃烧,部分样点表现为石油源;颗粒态PAHs则主要表现为高温燃烧以及石油泄漏源;而沉积物PAHs的来源则较复杂,除了草、木及煤的高温燃烧源和石油泄漏源,还有部分样点表现为石油的高温燃烧源.鲫鱼肌肉、卵部以及鳃部PAHs含量的测定结果表明,鲫鱼不同部位对PAHs的富集能力具有较大差异.鳃部总PAHs含量最高,其次为鲫肉部分,鲫卵所含PAHs浓度最少.与国内外其他研究相比较,滴水湖鲫鱼体内PAHs含量处于较低水平,但鲫鱼部分样品的BaP等当量浓度略高于EPA规定的可食性生物器官中PAHs含量的上限值.  相似文献   

9.
为了解银川市湖泊及城市河流沉积物中多环芳烃(PAHs)污染状况及生态风险,于2018年4~5月在银川市各湖泊及城市河流采集17个表层沉积物样品,采用气相色谱质谱(GC-MS)检测样品中PAHs含量.结果表明,银川市湖泊及城市河流表层沉积物中16种PAHs总含量范围为767.35~3961.53ng/g,平均值为2129.86ng/g,与国内外沉积物中PAHs污染状况相比,银川市湖泊及城市河流沉积物中PAHs污染处于较高水平.来源解析表明,银川市湖泊及城市河流沉积物中主要的污染来源为石油及煤炭等生物质的不完全燃烧.通过效应区间低中值法分析沉积物中PAHs的生态风险评价结果显示,部分采样点表层沉积物中菲的含量超过效应区间中值(ERM);沉积物质量标准法(SQSs)分析沉积物中PAHs生态风险结果表明,萘、苊检测含量在可能效应浓度值(PEL)与频繁效应浓度值(FEL)之间,菲的检测含量高于FEL;风险商值法分析显示苊烯、苊、菲、荧蒽风险熵值RQ>1.综合分析认为沉积物中多环芳烃的污染可能会造成一定程度的生态风险.  相似文献   

10.
长江河口表层沉积物中PAHs的生态风险评价   总被引:8,自引:4,他引:4  
2005年11月26—29日对长江河口部分表层沉积物中多环芳烃类化合物(PAHs)的污染现状进行了调查和研究,分析了其中16种PAHs单体含量. 结果表明,长江河口表层沉积物中属于美国优先控制的16种PAHs共检出15种,仅萘未被检出,w(PAHs)为355.72~2 480.85 ng/g,平均值为1 040.29 ng/g. 表层沉积物中以4环和5~6环PAHs为主,二者之和占w(PAHs)的80%以上. 长江河口表层沉积物中PAHs污染主要来源于矿物燃料的高温燃烧,但部分区域也不排除石油源输入的可能性. 与沉积物风险评估值相比,严重的生态风险在长江河口表层沉积物中不存在,然而排污口附近沉积物存在一定的生态风险.   相似文献   

11.
太湖水体多环芳烃生态风险的空间分布   总被引:5,自引:0,他引:5       下载免费PDF全文
以太湖梅梁湾、贡湖湾和胥口湾水体多环芳烃(PAHs)含量水平为基础,通过物种敏感度分布曲线计算三湖湾水体PAHs对水生生物的潜在危害比例,以此表征PAHs对太湖三湖湾水体的生态风险,并对其空间分布特征进行讨论.结果表明:PAHs对太湖三湖湾水体的生态风险大小依次是:Flua(1.1641%),Phe(0.2206%),Pyr(0.1633%),BaP(0.0175%),Ant(0.0021%),Flu(0.0005%), Ace(0.0000%),∑7PAH的联合生态风险(3.0954%)大于单体PAHs的生态风险. Ant, BaP和∑7PAH对梅梁湾(0.0209%,0.1237%和4.1018%)的生态风险显著高于贡湖湾(0.0023%,0.0085%,3.0414%)和胥口湾(0.0002%,0.0015%,2.3899%)(P0.05);Flu和Phe对胥口湾(0.0004%,0.1553%)的生态风险显著低于梅梁湾(0.0011%,0.2999%)和贡湖湾(0.0009%,0.2681%)(P0.05);Pyr和Flua对梅梁湾(0.3268%,1.7156%),贡湖湾(0.1697%,1.2386%)和胥口湾(0.1044%,0.8339%)水生生物的生态风险具有显著性差异(P<0.05).空间分布表明:梅梁湾西北部PAHs的生态风险最大,贡湖湾北部次之,胥口湾最小.  相似文献   

12.
对淀山湖湖体6个站位表层沉积物中多环芳烃(PAHs)进行了季节测定,结果表明,16种美国EPA优先控制的PAHs均有检出,PAHs总含量(干重)波动范围54.6~1331.2ng/g,均值373.4ng/g.与国内外大多数湖泊相比,淀山湖沉积物中PAHs含量水平属中等偏下.总含量季节变化大体为冬季 > 春季 > 秋季 > 夏季.另对出入湖口河流6个站位表层沉积物中PAHs含量测定,表现为入湖口 > 出湖口 > 湖体,季节变化特征与湖体相一致.PAHs环数所占比重为4环 > 5~6环 > 2~3环,采用特征比值法进行源解析,其主要来源是煤炭和生物质的不完全燃烧,主因子分析显示贡献率为80.22%.基于沉积物质量基准法(SQGs),提出一种PAHs风险量化评价新方法--风险度指数法(RIM),用此方法风险评价表明,部分单体(Acy、Ace、Ant和BaA)风险度指数RI为3.09~3.29,属中等风险水平,大多数PAHs单体风险度指数RI为0.79~2.73,相对处于中低风险水平,总体PAHs风险度指数TRI为2.64,污染状况处于中低风险水平.淀山湖作为上海市一个重要水源地,PAHs污染的潜在风险仍不可忽视.  相似文献   

13.
为揭示松花江干支流表层沉积物中16种PAHs(多环芳烃)的空间分布特征及其生态风险状况,采用气相色谱-质谱联用仪分析了2017年9月松花江干支流26个表层沉积物16种PAHs质量分数特征,并采用比值法对其污染来源进行解析,运用沉积物质量基准法和质量标准法评价其生态风险状况.结果表明:①松花江干支流表层沉积物中w(∑16PAHs)为169.76~3 769.19 ng/g,以3~6环高环为主,并且支流w(∑16PAHs)(范围为169.76~3 769.19 ng/g,平均值为1 598.41 ng/g)高于干流(范围为459.92~2 092.58 ng/g,平均值为1 173.67 ng/g),呈从上游到下游逐渐降低的趋势.②松花江干支流表层沉积物中w(∑16PAHs)主要来源于生物质燃烧和石油燃烧.③松花江干支流表层沉积物中w(∑16PAHs)总体处于低生态风险水平,个别支流点位(3个)会发产生经常性生态风险.研究显示,松花江流域干支流表层沉积物中w(∑16PAHs)呈从上游到下游逐渐降低的趋势,并且支流高于干流,但总体处于低生态风险水平.   相似文献   

14.
松花湖是吉林省面积最大的湖泊和重要水源地,具有防洪排涝、灌溉供水、航运旅游等重要功能.为探究松花湖中PAHs(多环芳烃)和PAEs(邻苯二甲酸酯)的主要污染来源及生物毒性风险,于2017年7月采集松花湖21个表层沉积物样品,采用GC-MS测试16种US EPA(美国环境保护局)优先控制PAHs和6种PAEs的质量分数,并通过统计学方法对调查结果进行分析.结果表明:①松花湖沉积物中w(∑16PAHs)范围为23.1~554.8 ng/g,平均值和中位值分别为172.9和123.2 ng/g,w(∑16PAHs)高值分布在漂河镇和丰满乡附近湖区,主要来源于石油燃烧污染,贡献率为57.9%,其次为煤及生物质燃烧污染、石油泄露污染,贡献率分别为21.1%、21.0%.②松花湖沉积物中w(∑6PAEs)范围为33.7~2 062.3 ng/g,平均值和中位值分别为240.4和72.7 ng/g,主要成分为DBP(邻苯二甲酸二正丁酯)和DEHP(邻酞酸二辛酯),w(∑6PAEs)高值分布在旺起镇附近湖区,其来源主要与城镇生活污染输入有关.③松花湖沉积物中PAHs、PAEs污染生态风险较低,只有部分采样点存在低度潜在生态风险,但旺起镇附近湖区沉积物中的w(DBP)已经临近ERL(效应区间低值),需加以关注.研究显示,松花湖PAHs、PAEs污染程度较低,为加强松花湖饮用水源地保护,应着重加强交通燃油污染源的风险防控,同时在乡镇附近湖区应加强燃煤和生活污染源的监管力度.   相似文献   

15.
海河及渤海表层沉积物中多环芳烃的分布与来源   总被引:11,自引:0,他引:11  
采集海河和渤海表层沉积物样品,测定16种EPA规定多环芳烃.海河∑PAH含量(干重)范围为445~2185 ng·g-1,平均值为964 ng·g-1;渤海∑PAH含量范围为171~290 ng·g-1,平均值为226 ng·g-1.海河塘沽区段和天津市区段沉积物中∑PAH含量比郊区段含量高.LMW/HMW(低分子质量/高分子质量)和异构体比值分析表明,生物质及煤的燃烧为海河表层沉积物中PAHs主要来源;对于渤海湾大部分区域来说,石油污染是其PAHs的主要来源,而热解来源的PAHs主要以生物质及煤的燃烧为主;滨海旅游度假村附近海域因受旅游活动影响而燃烧源的贡献较大.风险评价表明,海河及部分渤海海域存在潜在生态危害,滨海村附近海域存在潜在生态风险可能性较低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号