首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
侍宽  薛罡  高品  吴凡 《环境科学》2014,35(6):2241-2248
研究了丝状菌膨胀状态和正常污泥状态下无纺布生物反应器的污泥絮体形态、出水水质对比,膜通量变化,膜阻力分析和胞外聚合物(EPS)含量分析.结果表明,膨胀污泥的平均粒径为448.6μm,正常污泥的平均粒径为234.8μm;丝状菌膨胀状态下的平均COD去除率、NH+4-N去除率、出水浊度分别为90.1%、93.1%、1.33 NTU,较之正常污泥状态下的91.4%、97.0%、0.99 NTU,丝状菌膨胀对COD去除几乎没有影响,对NH+4-N去除有一定的抑制,对出水浊度略有影响;膨胀污泥状态和正常污泥状态下的平均膜通量衰减速率分别为3.29 L·(m2·h2)-1、4.87 L·(m2·h2)-1,膨胀状态下的膜污染较轻,膨胀状态下的膜污染以可逆污染为主,正常状态下以不可逆污染为主,优先发生可逆污染可以减少不可逆污染的发生,从而减缓膜通量的下降;正常污泥和膨胀污泥混合液中溶解性微生物产物(SMP)含量分别为21.369 mg·L-1、10.182 mg·L-1,蛋白质/多糖(P/C)分别为0.370、0.497,SMP的总量与膜污染阻力有关系,P/C与可逆污染所占的比例有关系,混合液污泥的松散附着性EPS与膜污染的关系同SMP相似;EPS含量较高的污泥更易于在膜表面累积,并且累积于膜表面的EPS主要是蛋白质,混合液污泥EPS总量、膜面污泥EPS以及它们的P/C都与膜表面可逆污染存在正相关性.  相似文献   

2.
纳滤对煤矿矿井水处理的试验研究   总被引:3,自引:0,他引:3  
介绍了用纳滤膜处理含悬浮物矿井水的工艺流程,考察了纳滤膜不同操作特性对膜过滤性能的影响及组合工艺对矿井水的处理效果。试验结果表明:纳滤膜在过滤周期为30min采用反曝气方式冲洗,能够有效减少膜污染,恢复膜通量。该工艺对煤矿井水的处理效果明显,高锰酸盐去除率为97.1%,浊度去除率为99.3%,硬度和含盐量去除率分别为95.1%和73.1%,色度去除率为91.7%。细菌的去除率为86%。  相似文献   

3.
一体式膜生物反应器膜污染影响因素研究   总被引:1,自引:0,他引:1  
试验采用聚丙烯中空纤维膜,通过正交试验考察了膜通量、抽停时间、曝气量对膜过滤压力的影响,得出适合的膜通量是减缓膜污染的决定性因素。并确定了适宜的运行条件:膜通量5L/(m2·h),抽吸时间8min,停抽时间2min,曝气量0.6m3/h;同时考察了EPS中多糖和蛋白质对膜污染的影响,得出多糖是主要的污染物质。  相似文献   

4.
金属膜生物反应器处理生活污水膜污染的影响因素   总被引:8,自引:7,他引:1  
采用浸没式平板金属膜生物反应器处理模拟生活污水,考察好氧与缺氧/好氧(anoxic/oxic,A/O)2种运行模式下ρ(MLSS)和污泥粒径分布对膜过滤性能的影响及膜过滤阻力的组成.结果表明,对于好氧膜生物反应器,存在一个能获得良好膜过滤性能的ρ(MLSS)范围;好氧模式下膜过滤阻力主要为滤饼层阻力,且滤饼层能通过在线药洗或机械清洗较好地去除,系统在膜通量为0.80~1.00 m3,(m2·d)下未进行离线药洗连续运行115 d.A/O模式下膜过滤阻力主要为内部阻力;A/O循环导致污泥破碎解体,产生大量微小粒子,在膜孔内形成吸附和堵塞,使膜过滤性能急剧下降,为维持系统运行,A/O阶段将膜通量从1.00 m3,(m2·d)降至0.50 m3/(m2·d),并进行了15次膜清洗.  相似文献   

5.
文章探讨了添加剂F127的质量百分含量(5%、7%、10%和13%)对CPVC超滤膜微观结构及其性能(包括水通量、截留率、机械性能、亲水性和耐污染性能)的影响.结果表明:随着F127含量的增加,铸膜液剪切粘度增加,截留率上升,亲水性和耐污染性能大幅度提高,纯水通量和机械性能有所下降.综合比较添加剂F127含量为10%时,CPVC超滤膜性能较好.  相似文献   

6.
细菌群体感应现象及其在控制膜生物污染中的应用   总被引:1,自引:0,他引:1  
叶姜瑜  谭旋  吕冰  陈刚才 《环境工程》2013,(Z1):196-199
膜生物污染是限制膜生物反应器大规模推广的主要因素。细菌群体感应是能通过感知分泌到环境中自诱导物浓度的变化来调整基因表达,增强其在复杂环境中的生存能力。细菌群体感应系统与细菌生物膜的整个形成过程包含了黏附、成熟、以及生物膜后期的细胞扩散密切相关。近年的研究表明,利用群体淬灭技术抑制MBR膜生物污染是有效和经济可行的。  相似文献   

7.
采用碳纳米管(carbon nanotube,CNT)对聚偏氟乙烯(polyvinylidene fluoride,PVDF)中空纤维超滤膜进行改性,结合臭氧预氧化技术,考察了臭氧-CNT膜改性联用工艺的阈通量及膜表面污染情况.结果表明,原膜阈通量为45 L·(m~2·h)~(-1),联用工艺下阈通量为81 L·(m~2·h)~(-1),联用工艺相对原膜阈通量提高了约80%;且联用工艺的污染速率最低,约为0. 001 37k Pa·min-1·L-1·m~2·h.相同臭氧投量与CNT负载量下,对比联用工艺阈通量与临界通量运行情况,得出阈通量下运行过水量高于临界通量运行,表明阈通量下运行能够缓解膜污染,延长膜组件的运行时间.膜污染碳平衡实验结果表明,采用CNT对膜改性后,膜组件的纳污能力与可恢复性得到明显提高,臭氧氧化能够进一步提高CNT改性膜组件的可恢复性,大幅提高其过水性能和使用时间.  相似文献   

8.
通过向自制固定床生物膜反应器(FBBR)中投加氯化锰,考察了Mn~(2+)对生物膜量、形态结构、降解性能及其胞外聚合物(EPS)组分的影响,并探究了Mn~(2+)在生物膜形成中的作用、影响规律及其对生物膜反应器运行效能的影响.结果表明,投加Mn~(2+)有助于生物膜形成,增强生物膜致密性,并促进生物膜生长;在生物膜成熟期连续投加10 mg·L~(-1)Mn~(2+)对一个周期内生物膜的降解活性影响很小,反应器COD和NH_4~+去除率分别达到85.4%±1.5%和76.3%±1.9%;生物膜不同类型EPS含量的变化表明,Mn~(2+)不仅加速了生物膜的成熟和增强了生物膜去除有机物的稳定性,而且还会刺激生物膜分泌产生更多的紧密粘附型EPS,其中的蛋白质和多糖能够保护微生物免受Mn~(2+)伤害.  相似文献   

9.
PES/PAN膜在MBR中膜污染机理及抗污染性能   总被引:2,自引:2,他引:0  
采用液-固相转化法,以聚醚砜(PES)、氯化锂(LiCl)、聚乙烯吡咯烷酮(PVP)和N,N-二甲基乙酰胺(DMAc)为原料制备PES膜,并在体系中添加聚丙烯腈(PAN)制备PES/PAN膜。在操作温度25℃,操作压力90KPa条件下制得的PES/PAN膜、自制PES膜和商品PES超滤膜分别为222L/(m·2h)左右,130L/(m·2h)左右,82L/(m·2h)左右。通过膜生物反应器中膜阻力的测定,表明膜污染主要由沉积层引起的,另一方面长期运行膜孔堵塞也是阻力增大的原因。在MBR中运行时,PES/PAN膜、自制PES膜和商品PES超滤膜膜通量的衰减速率分别为0.2559L/(m·2h·min)、0.3366L/(m·2h·min)、0.3539L/(m·2h·min),PES/PAN膜通量衰减最慢;在MBR中运行15d后,经过化学清洗,PES/PAN膜、自制PES膜和商品PES超滤膜纯水通量恢复率分别为83.75%、63.58%、61.32%,PES/PAN膜通量恢复率最大,抗污染性优于PES膜。  相似文献   

10.
污泥龄对膜生物反应器性能的影响   总被引:5,自引:0,他引:5  
张景丽  曹占平  张宏伟 《环境科学》2008,29(10):2788-2793
研究了膜生物反应器污泥龄对胞外聚合物(EPS)含量、污泥特性、污泥颗粒粒径分布及膜过滤阻力的影响.结果表明,污泥龄(SRT)为30 d时混合液中胞外聚合物(EPS)和膜面上的EPS含量分别约为90 mg/g、0.8 g/m2,随污泥龄的延长二者同步增加,EPS在膜面上几乎没有积累;混合液EPS含量的增加改变了细菌表面电荷且增大了细菌表面亲水基和疏水基的比例,使细菌存在状态由不稳定型(R型)向稳定型(S型)转变.造成污泥的沉降困难;在长污泥龄运行中.混合液中污泥颗粒呈现双峰分布,泥龄30 d时在O.5 μm和16 μm处有2个峰且平均粒径约14μm,污泥龄延长双峰分布向颗粒小的方向移动;混合液中微细颗粒含量及粒径分布对膜污染起决定性作用.综合考虑膜污染和污泥特性,膜生物反应器的污泥龄应控制在优势菌最小世代时间(运行温度下的最大比增长速度)的120倍以下.  相似文献   

11.
臭氧-CNT膜改性联用工艺对PVDF中空纤维膜污染进程的缓解   总被引:2,自引:1,他引:1  
采用碳纳米管(carbon nanotube,CNT)对聚偏氟乙烯(polyvinylidene fluoride,PVDF)中空纤维超滤膜进行改性,结合臭氧预氧化技术,考察了臭氧-CNT膜改性联用工艺对PVDF中空纤维膜污染进程的缓解作用,研究了CNT负载量和臭氧投量对中空纤维膜组件通量变化和抗污染性能的影响.结果表明,CNT负载量为3 g·m-2、臭氧投量(以O3/DOC计)为0.22mg·mg-1时,临界通量下[144 L·(m2·h)-1],膜组件单位面积过水量达到850 L·m-2,相比原始超滤膜过水量提高了4.5倍;低通量[18 L·(m2·h)-1]下运行15d,膜组件单位面积过水量达到3000 L·m-2,相比原膜单位过水量提高近10倍.使用共聚焦激光扫描电镜观测污染膜表面,结果表明,运行压力增长最快的原膜表面污染层内活菌数量最多;臭氧氧化与CNT膜均能够减少膜表面污染层内的微生物总量和活菌数量,从而缓解了运行压力的增长.臭氧氧化后CNT层的存在,进一步减少了膜表面污染层内的活菌数量,同时截留了部分死菌,但截留的死菌与运行压力增长无明显相关性.  相似文献   

12.
康旭  程源元  齐晶瑶 《环境科学学报》2020,40(10):3666-3673
采用层层自组装法,在氧化石墨烯(GO)中原位生长ZIF-8,GO-ZIF复合纳滤膜中的GO层间距被成功扩大.通过单宁酸(TA)的修饰,GO-ZIF-TA复合纳滤膜的渗透通道被进一步优化以提高通量和抗污染性能.采用SEM、XRD、FTIR等对复合膜材料进行表征和死端过滤对膜性能进行测试.GO-ZIF复合纳滤膜过滤50 mg·L-1甲基蓝(MB)时水通量达到40.01 L·m-2·h-1,是GO膜水通量的2.4倍,其MB截留率为92.63%.采用TA对GO-ZIF复合纳滤膜进一步改性优化,得到的复合纳滤膜过滤MB时水通量达到47.09 L·m-2·h-1,并保持92.13%的MB截留率.TA沉积使膜表面更光滑并改善膜的亲水性,GO-ZIF-TA复合膜表现出良好的抗污染性.  相似文献   

13.
硫酸盐还原菌活性污泥胞外聚合物对环丙沙星的吸附机制   总被引:1,自引:0,他引:1  
张会群  贾妍艳  方荷婷  阴琳婉  吕慧 《环境科学》2018,39(10):4653-4660
胞外聚合物(extracellular polymeric substances,EPS)是微生物污泥的重要组成部分,在废水生物处理过程中起着至关重要的作用.通过上流式硫酸盐还原反应器(sulfate-reducing up-flow sludge bed,SRUSB)的连续运行和批次实验评价了硫酸盐还原菌(sulfate-reducing bacteria,SRB)活性污泥对环丙沙星(ciprofloxacin,CIP)的去除以及EPS在CIP去除过程中所起的重要作用.结果表明,SRB污泥可通过吸附和生物降解有效去除CIP,其中吸附是主要去除途径,EPS在吸附过程中起到重要作用.采用三维荧光光谱结合平行因子分析探究了SRB活性污泥的EPS与CIP结合的机制;采用傅里叶红外光谱分析鉴定了EPS中参与CIP结合的主要官能团.EPS主要通过静态猝灭与CIP结合形成EPS-CIP复合物,其中色氨酸和酪氨酸类蛋白质是EPS中主要参与CIP结合的物质,结合常数分别为1.43×104L·mol~(-1)和1.02×104L·mol~(-1);红外分析表明,羟基、氨基和羧基是EPS中主要参与CIP结合的基团.实验结果揭示了SRB污泥的EPS与CIP结合的机制,有助于更好地理解EPS在SRB污泥系统去除CIP,以及其他有机微污染物的过程中所起的重要作用.  相似文献   

14.
生物污染是水处理膜分离应用面临的主要问题之一。生物膜的形成受细菌群体感应系统调控,群体感应抑制是控制膜生物污染的新兴技术。介绍了群体感应机制及其参与生物膜形成的有关研究。通过干扰和阻断细菌的信息交流通路,可阻止群体感应依赖型基因表达从而抑制细菌的特定群体行为。综述了基于细菌群体感应和群体淬灭的水处理膜生物污染控制研究,考察了各类群体感应抑制剂在膜法水处理系统中的应用,以及抑制剂固定化、膜材料改性等研究进展,展望了群体感应理论在膜生物污染控制中的研究方向。  相似文献   

15.
Among the numerous parameters affecting the membrane bioreactor (MBR) performance, the aeration intensity is one of the most important factors. In the present investigation, an anoxic/aerobic-type (A/O-type) sequencing batch MBR system, added anoxic process as a pretreatment to improve the biodegradability of azo dye wastewater, was investigated under different aeration intensities and the impact of the aeration intensity on effluent quantity, sludge properties, extracellular polymeric substances (EPS) amount generated as well as the change of permeation flux were examined. Neither lower nor higher aeration intensities could improve A/O-type sequencing batch MBR performances. The results showed 0.15 m3·h−1 aeration intensity was promising for treatment of azo dye wastewater under the conditions examined. Under this aeration intensity, chemical oxygen demand (COD), ammonium nitrogen and color removal as well as membrane flux amounted to 97.8%, 96.5%, 98.7% and 6.21 L·m−2·h−1, respectively. The effluent quality, with 25.0 mg·L−1COD, 0.84 mg·L−1 ammonium nitrogen and 8 chroma, could directly meet the reuse standard in China. In the meantime, the sludge relative hydrophobicity, the bound EPS, soluble EPS and EPS amounts contained in the membrane fouling layer were 70.3%, 52.0 mg·g−1VSS, 38.8 mg·g−1VSS and 90.8 mg·g−1VSS, respectively, which showed close relationships to both pollutant removals and membrane flux.  相似文献   

16.
N-acyl-homoserines quenching, enzymatic quenching of bacterial quorum sensing, has recently applied to mitigate biofilm in membrane bioreactor. However, the effect of AHLs on the behavior of biofilm formation is still sparse. In this study, Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) concentrations. Diffusing C8-oxo-HSL increased the growth rate of cells on biofilm where the concentration of C8-oxo-HSL was over 10-7 g/L. The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10-7 g/L C8-oxo-HSL. Surprisingly, 10-11-10-8 g/L of C8-oxo-HSL had no effect on cell growth in liquid culture. The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.  相似文献   

17.
以基于同步去除/富集磷酸盐的厌氧/好氧交替生物膜序批式反应器内生物膜为研究对象,研究了胞外聚合物(EPS)内磷含量形态及生物膜内微生物种群变化,探究EPS在生物膜去除/富集磷酸盐中的作用及其与微生物种群之间的联系.结果表明,生物膜反应器在厌氧外加COD为200 mg·L-1的条件下富集到了磷浓度为120.95 mg·L-1的富集液.EPS在生物膜吸/释磷过程中发挥重要作用,EPS磷含量占生物膜磷含量的69.16%~79.00%,31P核磁共振实验表明ortho-P为EPS内主要磷形态,占比为85.47%~88.60%.高通量测序结果表明生物膜内微生物种群变化明显,Candidatus_Competibacter为优势菌属,其丰度由1.23%增至38.87%,有利于形成更具粘性的EPS进而黏附在生物膜上,可能促进EPS在吸/释磷中发挥作用;暖绳菌科为优势聚磷菌,随实验温度升高,其丰度由5.29%减至4.90%.  相似文献   

18.
研究了微塑料在膜蒸馏过程中不同温度、pH、微塑料浓度和微塑料粒径条件下对含锑高盐废水的处理性能及机理.结果表明,随着进料液温度的升高,饱和蒸汽压的增加提高了传质动力,不含微塑料时膜通量由17.4 L·m-2·h-1提高至20.7 L·m-2·h-1,通量提升了18.9%,含有微塑料时膜通量由15.6 L·m-2·h-1提高至18.5 L·m-2·h-1,提升了18.6%;pH由3增大至11时,由于重金属锑在不同pH条件下的价态变化及静电排斥作用,重金属锑截留率由98.2%提升至99.6%;微塑料浓度的增加会降低膜通量,提高锑截留效果,这可能是微塑料对溶液中重金属锑的吸附作用及微塑料在膜表面的积聚产生的筛分效应引起的.  相似文献   

19.
Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances (EPS). To date, few studies have paid attention to the behavior of microorganisms in drinking water treatment with ultrafiltration (UF) membranes. Herein, the membrane biofouling was investigated with different aluminum and iron salts. We found that Al2(SO4)3·18H2O performed better in reducing membrane fouling due to the slower growth rate of microorganisms. In comparison to Al2(SO4)3·18H2O, more EPS were induced with Fe2(SO4)3·xH2O, both in the membrane tank and the sludge on the cake layer. We also found that bacteria were the major microorganisms, of which the concentration was much higher than those of fungi and archaea. Further analyses showed that Proteobacteria was dominant in bacterial communities, which caused severe membrane fouling by forming a biofilm, especially for Fe2(SO4)3·xH2O. Additionally, the abundances of Bacteroidetes and Verrucomicrobia were relatively higher in the presence of Al2(SO4)3·18H2O, resulting in less severe biofouling by effectively degrading the protein and polysaccharide in EPS. As a result, in terms of microorganism behaviors, Al-based salts should be given preference as coagulants during actual operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号