首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
为研究间接热解吸工艺设备的工程化应用条件,分析热解吸技术对污染土壤中PAHs的去除率及热解烟气的达标状况,针对工程应用中的不同热解条件,考察其对PAHs的实际去除效果。结果表明:1)在处理温度为350℃、处理时间为40 min时,PAHs去除率R(T)>90%,继续延长停留时间对PAHs的去除率改变不大。2)修复前污染土壤中16种PAHs含量在1~5 mg/kg,经间接热解吸工艺处理后土壤中PAHs去除率超过90%,部分接近100%;3)热解吸设备处理土壤后,产生的烟气中苯并[a]芘(含量水平,δ)的最大值仅为141×10-6mg/m3,实际工程中热解烟气中检测出少量二恶英,其浓度可达到GB 18484—2001《危险废物焚烧污染控制标准》。  相似文献   

2.
多环芳烃污染土壤的菌群-植物联合修复效应研究   总被引:1,自引:0,他引:1  
采用盆栽试验方法,研究了菌群与三种植物(高羊茅、紫花苜蓿、三叶草)联合修复多环芳烃污染土壤的效应。结果表明,植物在修复中起重要作用,加菌群的土壤中PAHs的去除率高于未加菌群的处理。种植高羊茅加菌群、紫花苜蓿加菌群、三叶草加菌群处理土壤中PAHs去除率分别为41.8%、34.5%和27.1%植物体内有高分子量PAHs的积累,四环PAHs的含量高于五环PAHs。  相似文献   

3.
选取腐殖酸重要组分胡敏酸、富里酸、胡敏素为研究对象,研究了不同老化时间下多环芳烃(PAHs)在腐殖酸各组分中的赋存特征.同时,探究了过硫酸钠、高锰酸钾、芬顿试剂、过氧化氢4种氧化剂氧化PAHs过程中污染物在腐殖酸和上清液中的分布情况,确定胡敏酸、富里酸、胡敏素中PAHs的降解效率.实验结果表明,PAHs在胡敏素中存在吸附滞后现象,老化前期胡敏素对PAHs的吸附速率慢、吸附量少,但老化后期出现吸附量的反超,因此,胡敏素、胡敏酸和富里酸中PAHs的最终吸附量并没有明显差异.高环PAHs在3种腐殖酸组分中的吸附速率和最终吸附量远小于低、中环PAHs.过硫酸钠和高锰酸钾能够较好地去除胡敏酸、富里酸、胡敏素中的大部分PAHs,去除率均在95%左右,芬顿试剂对胡敏酸、富里酸和胡敏素中总PAHs的去除效果差别不大,去除率均在79.36%~88.05%之间;过氧化氢对胡敏酸和胡敏素中PAHs的去除率分别为82.82%和61.77%,而对富里酸中PAHs的去除效果最差,去除率仅为43.96%.过硫酸钠和高锰酸钾是氧化PAHs类有机污染土壤的最佳氧化剂,能够有效提高不同组分腐殖酸中PAHs的去除率.  相似文献   

4.
为了探究化学氧化对污染土壤修复过程土著微生物生理生态功能的影响,以焦化场地多环芳烃(PAHs)污染土壤为实验对象,研究了高锰酸钾、过硫酸钠和臭氧这3种氧化剂在不同液固比条件下对PAHs的修复效果和土著微生物的响应关系.结果表明,该焦化场地土壤ΣPAHs含量为679.1 mg·kg-1,高锰酸钾和过硫酸钠投加量为1%时,液固比为6:1条件下ΣPAHs(16种PAHs)的去除率最高,分别为96.9%和95.7%,而臭氧剂量为72 mg·min-1、液固比为8:1时ΣPAHs的去除率(82.3%)最高;不同液固比条件下低环PAHs (3~4环)的去除率高于高环PAHs (5~6环),去除率最高的是菲和二氢苊;而对于高环的苯并[a]芘,仅高锰酸钾对其去除效果较优,去除率达到97.4%;微生物数量分析表明,土壤微生物数量经高锰酸钾处理后骤降,由108 copies·g-1降至105 copies·g-1,而过硫酸钠和臭氧处理变化不明显,数量级未发生显著变化;微生物群落结构分析表明,污染原土中Proteobacteria占绝对优势,相对丰度为99.5%,高锰酸钾和过硫酸钠处理后微生物多样性显著增加,多种能够降解PAHs的微生物(如RalstoniaAcinetobacter等)相对丰度大幅提高;微生物代谢功能路径分析表明,化学氧化处理增加了PAHs降解菌的相对丰度,提高了有机物代谢能力.总体而言,液固比为6:1时高锰酸钾处理会显著改变土著微生物数量,微生物群落结构和PAHs降解微生物相对丰度.  相似文献   

5.
多环芳烃类污染土壤热脱附修复技术应用研究   总被引:2,自引:1,他引:1       下载免费PDF全文
赵涛  马刚平  周宇  李世青 《环境工程》2017,35(11):178-181
针对传统热脱附工艺脱附时间长、处理成本高、尾气处理工艺不完善等问题,进行了电加热回转窑热脱附实验。研究发现:随着温度增高、时间增长,总PAHs去除率增加;10 min条件下350℃与500℃时总PAHs的去除率分别为98.83%和98.94%,土壤中PAHs可达到修复目标值;500℃时多环芳烃的去除率表现为低环PAHs>高环PAHs。在此基础上,通过集成形成1套集污染土壤预处理、热脱附、尾气净化、余热利用、自动化控制于一体的工艺技术,并建成年处理有机污染土壤18万t的热脱附生产线。在350和500℃条件下对1万余吨污染土壤进行热脱附处理后(≥10 min),总PAHs去除率分别为98.92%和99.95%,尾气排放指标均低于DB 11/501—2007《大气污染物综合排放标准》。  相似文献   

6.
焦化厂高环PAHs污染土壤的电动-微生物修复   总被引:2,自引:2,他引:0  
针对沈阳某焦化场地污染土壤中PAHs高环比例高、浓度高的特点,采用二维空间对称电场、功能性PAHs降解菌剂,进行了工程水平的电动-微生物联合修复试验(面积200 m2,极距1 m,土高0.7 m)。结果表明:极性切换形成的对称电场能使土壤pH保持在中性范围(pH在6.6~6.9),有利于微生物的生长代谢,提高了土壤中总PAHs和高环PAHs的去除率。在98 d时电动-微生物修复去除率达到51.2%,较微生物组提高了18.7%,削减负荷达40.6 g/(m3·d)。其中10种4—6环PAHs的去除率平均提高了20.9%,显示出电动-微生物技术修复焦化场地PAHs污染土壤的可行性及工程化应用前景。  相似文献   

7.
氰化物污染土壤的化学氧化修复方法初步研究   总被引:3,自引:0,他引:3  
利用漂白粉(Ca(ClO)2)、H2O2、二氧化氯消毒剂(ClO2)作为氧化剂,处理氰化物污染的土壤,使其分解成低毒物或无毒物,据此建立了二氧化氯消毒剂(ClO2)处理含氰土壤的新方法.结果表明,漂白粉大大提高了土壤的pH值,改变了土壤原有的理化性质,H2O2有较好的处理效果但是氧化效率低,综合考虑,选择低浓度ClO2强氧化剂来修复氰化物污染的土壤.同时研究了温度、反应时问、ClO2浓度对反应的影响.结果显示,常温下,0.1%的ClO2为氧化剂,反应时间为45 min时,去除率可以达到55.57%;当ClO2浓度仍为0.1%,将温度升高为65℃.反应时间为30min时,去除率即能够达到98.85%.研究结果表明,该方法对氰化物污染的土壤处理是一种可行的和有效的选择,具有实用意义.  相似文献   

8.
化学预氧化耦合生物降解技术已经逐渐地应用到PAHs污染土壤修复研究过程。经研究证实,化学预氧化耦合生物降解技术能够有效地修复PAHs污染土壤。具体阐述化学预氧化耦合生物降解技术在修复PAHs污染土壤过程中化学预氧化机理、耦合技术研究现状及优缺点,并就进一步提高耦合技术对PAHs污染土壤修复效率的相关研究提出展望。  相似文献   

9.
原位生物修复提高多环芳烃污染土壤农用安全性   总被引:2,自引:2,他引:0  
为了减少多环芳烃(polycyclic aromatic hydrocarbons,PAHs)在作物体内的富集,降低食源性PAHs对人类的潜在风险,提高PAHs污染土壤的农用安全性,在受到PAHs污染的麦田中施用类球红细菌(Rhodobacter sphaeroide)菌剂(RS)进行原位修复.以叶面喷施(B)和根部喷施(D)50倍稀释的RS两种方式处理,以喷施等量清水的处理为对照(A),不做任何处理的麦田为空白(CK),从小麦苗期开始处理,到小麦成熟期测定了土壤和小麦籽粒中PAHs含量以及根际土壤微生物群落结构的变化,探讨了施用RS对PAHs污染土壤的强化修复作用.结果表明,施加RS的B区、D区与空白(CK)区相比,标识土壤微生物的磷脂脂肪酸(PLFAs)种类均有29.6%变异率;土壤PAHs的去除率分别提高了1.59倍和1.68倍;富集因子分别降低了58.9%和62.2%;50穗小麦籽粒的干重分别提高了8.95%和12.5%.RS的施用改变了土壤微生物群落结构,活化了土壤微生物的代谢活性,从而加快了土壤PAHs的降解;同时,RS的施用也降低了PAHs在小麦籽粒的富集量,提高了小麦的产量,显示出RS在提高PAHs污染土壤的农用安全性方面具有应用潜力.  相似文献   

10.
过硫酸钠是污染土壤化学氧化修复技术中应用较为广泛的氧化剂.为研究过硫酸钠对不同土壤中PAHs(polycyclic aromatic hydrocarbons,多环芳烃)的修复效果,以我国多种典型土壤(黑土、潮土、黄土、紫色土、褐土、砖红壤)为试验样本,以萘、菲、蒽、芘、苯并[a]芘5种PAHs为目标污染物,分析活化过硫酸钠对人为老化的降解率;此外,通过对氧化前后土壤pH、w(有机碳)等土壤性质变化的比较和分析,探讨氧化修复过程对土壤性质的影响.结果表明:当活化过硫酸钠用量为0.8 mmol/g、温度为25℃时,PAHs污染土壤中萘、菲、蒽、芘、苯并[a]芘的降解率最高,分别为87.82%、79.68%、87.93%、83.40%、94.31%.随着温度的升高,PAHs降解率逐渐升高,当温度达到25℃时,PAHs的降解率(85.69%)达到最高,随后随着温度的继续升高,总PAHs的降解率没有明显增加;随着pH的升高,PAHs的降解率逐渐升高,当pH达到6~7时,PAHs降解率维持在一个较高水平;随后随着pH的继续升高,总PAHs的降解率逐渐降低.随着温度以及pH的变化,5种PAHs的降解率与总PAHs的降解率变化趋势一致. w(有机碳)越低,PAHs环数越高,PAHs降解率越高;高环(5~6环)、中环(4环)、低环(2~3环)PAHs降解率与总PAHs降解率变化趋势一致.此外,过硫酸钠氧化修复后土壤结构遭到一定程度的破坏,土壤的pH、w(有机碳)和土壤肥力会有不同程度的下降,对土壤的再次利用有较大影响.研究显示,过硫酸钠可有效氧化降解不同性质土壤中PAHs,在氧化修复PAHs污染土壤方面具有较好的应用前景.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号