首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
一株苯噻草胺降解菌的系统发育分类及其降解特性研究   总被引:2,自引:1,他引:2  
自污水处理厂好氧活性污泥中分离到1株Y1菌株,该菌株具有较强的降解酰胺类除草剂苯噻草胺的能力.基于部分16SrDNA和生理生化特性分析,鉴定该菌为多食鞘氨醇杆菌(Sphingobacteriummultivolum).Y1菌株能有效地降解除草剂苯噻草胺,在1周内的降解率约为90%.其最适生长温度为28℃,最佳降解温度为32℃;在pH值为5~9范围内能保持对苯噻草胺的降解能力.Y1菌株经苯噻草胺诱导后具有一条相对分子量约为100k的特异性蛋白条带,而且在诱导1年的菌株中,该条带更明显.  相似文献   

2.
专性菌系对石油烃污染土壤的修复性能   总被引:1,自引:0,他引:1  
从焦化废水厂的活性污泥中采用“邻苯二酚-石油烃”双底物驯化获得石油烃的专性降解菌系,在最佳环境条件下研究其对石油污染土壤的修复性能.高通量测序分析显示,驯化后的专性菌系以产黄杆菌属(Rhodanobacter sp.)为主,占比41%.最适降解温度为30~35℃,最佳pH值为7~8.聚山梨酯-80(吐温80)可作为碳源促进专性菌系的生长,提高石油烃的降解效率,并且添加吐温80比十二烷基硫酸钠(SDS)更利于石油烃的降解.研究表明,当吐温80的浓度为5CMC(即375mg/L)时,石油烃的降解效率最高.在最佳环境条件下,为期80d修复试验,构建的专性菌系石油烃降解效率稳定在77%,这证实了双底物驯化模式获得的专性菌系对石油污染土壤具有良好的修复性能.  相似文献   

3.
放线菌GJ-167菌株对氯氰菊酯的降解特性研究   总被引:1,自引:0,他引:1  
从氯氰菊酯污染土壤中分离到1株放线菌,编号为GJ-167.驯化后通过摇瓶发酵实验对其降解特性进行了研究,结果表明,不同碳源、氮源、培养时间、温度、接种量及初始pH值等因素对GJ-167菌株降解氯氰菊酯都具有不同程度的影响,得出了最佳降解条件是培养时间为60h,温度30℃,pH值8.0,接种量5%,发酵培养转速为160r/min,在该条件下,GJ-167菌株对氯氰菊酯的降解率可达到88.3%.  相似文献   

4.
1株BTEX降解新菌株的分离鉴定及其降解特性研究   总被引:3,自引:1,他引:2  
取自炼油污水处理厂曝气池的活性污泥经过苯系物定向驯化后,选育到1株能同时高效降解苯、甲苯、乙苯和邻二甲苯(BTEX)的菌株byf-4,基于形态特征、生理生化、16S rDNA序列系统学分析和Biolog鉴定,可确定该菌株为染料分枝杆菌Mycobacterium cosmeticum,其为新发现的1株具有降解BTEX性能的菌株.该菌株最佳生长温度和pH分别为30℃和7.0,其对4种苯系物的降解优先顺序为苯、甲苯、乙苯、邻二甲苯;菌株降解苯、甲苯、乙苯和邻二甲苯的比耗氧速率分别为165.3、170.5、49.3和57.4 mg.(min.mg)-1;菌株降解BTEX的过程遵循Haldane动力学模型,对苯、甲苯、乙苯和邻二甲苯的最大比降解速率分别为0.518、0.491、0.443和0.422 h-1,菌株最大比生长速率分别为0.352、0.278、0.172和0.136 h-1.  相似文献   

5.
驯化活性污泥对丙烯酰胺的降解动力学   总被引:3,自引:0,他引:3  
对好氧活性污泥进行驯化,并研究了丙烯酰胺的生物降解动力学特征.驯化结果表明,经过24d的驯化后,活性污泥系统能稳定降解AM,驯化活性污泥能在20h内降解90%以上的AM,是高效的丙烯酰胺降解菌群.驯化活性污泥对丙烯酰胺的降解符合一级动力学特征.活性污泥对初始浓度为160、300和500mg·L-1浓度范围内的降解动力学方程分别为lnS=-0.0881t 5.5043,InS=一0.0692t 6.1282.InS=-0.0468t 6.3649,半衰期t1/2分别为7.87h,10.05h,14.87h,降解速率常数bKb随着AM浓度增加而降低.说明高浓度的AM对其生物降解有抑制作用.当pH分别为8.5,7.2,6.2,5.1时.活性污泥对初始浓度为300 mg·L-1的AM的降解动力学方程分别为lnS=-0.0414t 6.1038.lnS=-0.0592t 6.1744,lnS=-0.0692t 6.1282,lnS:=0.06t 6.1282.半衰期分别为16.74h、11.71h、10.05h、11.55h,说明弱酸性条件对AM的降解有明显的促进作用.考察温度对活性污泥降解动力学影响的研究表明,在20~35℃,随着温度的升高.活性污泥对AM的降解效率上升.不同时间段体系内NH 4-N,pH和NO-3-N都随着降解时间的增加逐步上升,但是达到一定时间后会下降,表明AM在降解过程中先水解,然后发生硝化反应,进而发生反硝化反应,最终AM降解成N2、CO2和H2O.  相似文献   

6.
郑莹  牟彪  王萍  王亚娥  李杰 《中国环境科学》2018,38(7):2535-2541
采用硝基苯(NB)模拟废水对生物海绵铁体系进行驯化,考察了NB初始浓度、海绵铁投加量、初始pH值、温度等因素对生物海绵铁体系降解NB的影响,初步探讨了生物海绵铁体系高效降解NB的机理.结果表明:生物海绵铁体系较普通活性污泥系统对NB适应性及氧化作用更强,驯化至第28d对300mg/L NB废水去除率稳定在98%以上,驯化周期比普通活性污泥体系缩短28d;海绵铁的加入大大促进了微生物对NB的降解,NB初始浓度及pH值对生物海绵铁体系降解速率影响较大,该体系适宜的温度范围较广,10~40℃均能高效降解NB,生物海绵铁体系对NB的降解符合零级反应动力学规律;生物海绵铁体系中活性氧化物(ROS)含量明显高于海绵铁体系及污泥体系,尤其是介入铁泥的生物海绵铁体系ROS含量更高,为体系发生较强类Fenton效应提供了条件.在实验确定的最佳工况下,经NB驯化的铁泥与海绵铁形成的生物海绵铁体系,NB降解速率为31.49min-1,6hNB降解率及TOC去除率分别高达92.0%和63.1%,较单独海绵铁体系与单独铁泥体系降解率的叠加值分别高出22.3%和11.4%.本研究为经济有效地处理NB废水提供了新思路.  相似文献   

7.
以α-蒎烯、乙酸丁酯和邻二甲苯3株高效降解菌为菌源(2株真菌和1株细菌),通过对比单菌单底物和多菌多底物降解效果,确定这3株菌之间不存在抑制效应,可用于构建"真菌-细菌"复合菌剂.考察了复合菌剂与活菌液的降解性能及对饥饿期的响应,结果表明复合菌剂和活菌液均能较完全地降解底物,但经历饥饿期后,复合菌剂对底物仍保持100%的降解率,而活菌液对α-蒎烯和邻二甲苯的去除率只有94.6%和62%.该菌剂具有较好的稳定性,常温保存180 d后对各初始浓度为120 mg·L-1的α-蒎烯、乙酸丁酯和邻二甲苯24 h内去除率为48.2%、95.1%和57.3%.将复合菌剂与活性污泥分别接种于生物过滤塔,复合菌剂能明显缩短生物膜形成时间,接种的反应器对底物总去除率维持在90%左右,而活性污泥只有60%.  相似文献   

8.
固定化微生物处理抗生素废水   总被引:5,自引:1,他引:5  
庞胜华  刘德明 《环境科技》2006,19(1):14-15,18
研究PVA复合载体包埋固定化微生物颗粒处理抗生素废水的工艺条件,活性微生物为经抗生素废水以10%浓度增幅驯化75d后的活性污泥。结果表明:进水ρ(CODα)为2000mg/L、曝气为20h、温度在10-45℃、pH值7—10、固定化颗粒与废水比例1:4是固定化活性污泥处理抗生素废水的最佳工艺条件,CODCr去除率可迭80.57%。  相似文献   

9.
生物法降解高氯酸盐及其优化研究   总被引:7,自引:2,他引:5  
钱慧静  奚胜兰  何平  徐新华 《环境科学》2009,30(5):1402-1407
利用经过驯化处理的厌氧活性污泥来处理高氯酸盐废水,以醋酸根为碳源,通过摇床实验考察了碳源浓度、pH值、生长温度、泥量和溶解氧等因素对高氯酸盐降解率的影响,初步确定最佳反应条件.结果表明,在35℃、初始pH值为 8.0的条件下,添加1.2 g/L的醋酸根,1.0 g厌氧培养的活性污泥能将50 mg/L的高氯酸盐完全降解.体系中的溶解氧会抑制高氯酸盐的降解.此外,还考察了生物膜柱反应器连续处理高氯酸盐模拟废水的效果,结果表明完全降解高氯酸盐的最小停留时间为6 h.  相似文献   

10.
二氯甲烷降解菌的研究   总被引:9,自引:1,他引:9       下载免费PDF全文
 通过驯化、筛选和富集培养,从制药厂(Y)和农药厂(N)生化曝气池的活性污泥中分离到2株能以二氯甲烷为唯一碳源和能源而生长的菌株.菌种初步鉴定为假单胞杆菌属和放线菌科分枝杆菌属.由正交试验得出GD11、GD23两株菌的最适培养条件:GD11温度28.5℃, pH值6.0,纱布层数6;GD23温度25℃,pH值7.2,纱布层数4.研究发现NaCl浓度对菌株的降解率有不同程度的抑制作用.  相似文献   

11.
对某印染废水处理厂的污泥进行模拟干燥处理,以产生的挥发分冷凝液为研究对象来考察干燥温度和干燥程度对印染污泥干燥过程中污染物产生的影响。随着干燥温度的升高,挥发分冷凝液COD、NH3-N含量均升高,且在140℃至160℃时升高较快,分别为177~262 mg/L,100~130 mg/L,而pH较稳定。污泥含水率从65%干燥至5%时,挥发分冷凝液的COD、NH3-N含量升高不明显,分别为176~190 mg/L、85~105 mg/L。干燥温度比干燥程度更能影响印染污泥干燥过程中污染物的产生。  相似文献   

12.
固定化混合菌处理高盐含油废水   总被引:3,自引:1,他引:2  
对固定化微生物的除油性能进行研究,结果表明:以甘蔗渣和海绵为载体的固定化微生物的除油效果比游离状态的微生物除油效果好。甘蔗渣的最佳投加量为20 g/L(干重),最佳固定化条件为:固定化时间为36 h、pH为6、温度为40℃,在最佳固定化条件下菌种接入废水24 h后,除油率达62%;海绵的最佳投加量为5 g/L(干重),最佳固定化条件为:固定化时间48 h、pH为7、温度为35℃,在最佳固定化条件下菌种接入废水24 h后,除油率达75.8%;以甘蔗渣为载体的固定化微生物在处理时间为108 h时,除油率达最高为84.5%,以海绵为载体的固定化微生物在处理时间为96h时,除油率达82.4%。  相似文献   

13.
为了考察不同Pb2+浓度(3、5、10 mg/L)下,SBR活性污泥系统对模拟含铅废水中Pb2+的去除效果,分析了活性污泥去除Pb2+的影响因素,并采用动力学模型、红外光谱及X射线能谱对活性污泥吸附Pb2+的机理进行了研究. 结果表明:①Pb2+浓度分别为3和5 mg/L时,SBR活性污泥系统对模拟含铅废水中Pb2+的去除率均在98%以上,该系统中活性污泥的Pb2+吸附量为6.2 mg/g;Pb2+浓度为10 mg/L时,SBR活性污泥系统运行后期Pb2+的去除率有所下降,这与该系统Pb2+累积量(351.6 mg)过高有关. ②在Pb2+长期作用下,SBR活性污泥系统各试验阶段的MLSS均会经历先下降再恢复的过程,且该系统中生物多样性和物种丰富度明显下降,可逐渐筛选出对Pb2+耐受性较强的微生物. ③SBR活性污泥系统去除Pb2+的适宜pH范围为6~7,最佳温度为25 ℃. ④活性污泥对Pb2+的吸附机理主要表现为化学吸附作用,包含表面有机络合、离子交换等过程. 研究显示,SBR活性污泥系统更适用于处理低浓度(3、5 mg/L)的含Pb2+废水.   相似文献   

14.
污泥生物-物理联合干燥技术具有停留时间短、能耗低、减量显著等优势。研究利用自主研制的污泥生物-物理联合干燥反应系统考察了脱水污泥:树皮分别为5:3,7:3和9:3时,污泥生物-物理联合干燥过程中温度、含水率等参数的变化规律。结果表明,污泥温度随干燥时间的延长先增大后减小,含水率随反应时间延长逐渐降低。当脱水污泥:树皮的比例为7:3时,污泥温度迅速升高,在48 h达到3组辅料配比最大值59℃,而后迅速降低,经过168 h处理后含水率从78.6%降低到60.9%,获得水分去除率的最大值57.6%。向脱水污泥中添加适量树皮,能提高其生物-物理联合干燥过程中污泥温度,增强水分去除效果。  相似文献   

15.
利用经驯化的以嗜碱菌群为主的好氧活性污泥及常规厌氧、好氧污泥,针对不同浓度的棉浆黑液在现场进行了单独"好氧"及"好氧-厌氧-好氧"全流程工艺实验。结果表明:对棉浆黑液直接进行好氧曝气,可将原水pH值自12.4左右稳定降低至10以下,COD去除率可达40%左右。全流程实验中厌氧效果显著,pH值最低可降至8.2,整个系统抗冲击能力强,运行稳定,COD总去除率保持在63%以上。  相似文献   

16.
为了筛选耐盐好氧反硝化菌,对活性污泥进行耐盐与好氧反硝化驯化后,分离得到具有很强反硝化能力的菌株GQ-42,经菌落形态特征观察、生理生化测定及16S rDNA测序及同源性比较等过程,鉴定为蜡状芽孢杆菌.通过对菌株GQ-42进行反硝化特性的研究,确定适宜的反硝化条件为:碳氮比≥6,温度26~38℃,pH6.0~9.0,溶...  相似文献   

17.
李刚  李伟光  王广智  李鑫  公绪金 《环境工程》2012,(Z2):489-493,568
以城市生活污水厂脱水车间污泥为原料,采用化学活化法(ZnCl2为活化剂)在活化剂浓度为45%、活化温度为600℃、浸渍温度为45℃、活化时间为50min条件下制备污泥基活性炭。对污泥基活性炭进行了孔结构、扫描电镜(SEM)、红外光谱(FTIR)、XRD等表征分析。结果表明:该条件下制备出的污泥基活性炭碘吸附值为427.51mg/g,比表面积为329.48m2/g,大孔、中孔、微孔容积分别为0.19,0.12,0.15cm3/g。平均孔径为3.953nm。将其应用于生活污水处理,考察了污泥基活性炭投加量、pH、吸附时间对其吸附性能的影响。  相似文献   

18.
活性炭纤维固定化菌对微囊藻毒素MC-LR的去除研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了藻蓝蛋白提取过程中微囊藻毒素MC-LR的释放分布规律,并用活性炭纤维对一株微囊藻毒素降解菌株进行了固定化,考察了不同活性炭纤维预处理方法、活性炭纤维用量、pH值、温度以及MC-LR浓度对固定化藻毒素降解菌去除MC-LR的影响.结果表明,藻蓝蛋白提取过程中MC-LR主要分布在超滤滤液中,占MC-LR总含量的81.2%.固定化藻毒素降解菌去除 MC-LR的效率明显高于非固定化藻毒素降解菌. 藻毒素降解菌用(1+9)盐酸预处理后的活性炭纤维固定化,其去除效果最佳.MC-LR去除的最适条件为:活性炭纤维用量为10g/L,温度为35℃, pH值为8.0.固定化藻毒素降解菌对pH值,温度具有一定的耐受性,能够在pH5~pH9、10℃~35℃范围内有效地去除MC-LR.  相似文献   

19.
在不同温度下,研究了流化填料分格式SBR工艺(简称MESBR工艺)与传统的SBR工艺的COD去除率,有机物降解速率,脱氮效果和污泥沉降性能。结果表明:MESBR系统温度下降到5℃时,COD的去除率基本稳定在90%以上,比传统SBR系统高出15%左右;MESBR系统与传统SBR系统的温度系数θ分别为1.021和1.045。温度由20℃下降至5℃时,传统SBR系统的TN和NH3-N去除率分别降低26.5%和20%,而MESBR系统分别降低18.6%和11%。传统SBR系统SVI值随温度变化较大,当温度下降到5℃时SVI值达到234.8 mL/g,而MESBR系统的SVI值没有明显的变化,基本维持在120~130 mL/g。  相似文献   

20.
苯酚降解菌的分离及降解特性研究   总被引:3,自引:0,他引:3  
从扬子乙烯集团废水处理系统曝气池中的活性污泥驯化分离得到一株能快速降解苯酚的菌株,初步鉴定其为假单胞菌属菌株。该菌株在5℃-35℃范围内时都可以有效降解并矿化200mg/L的苯酚,最适宜的生长温度为25℃左右;菌株在pH为5~9范围内可以降解200mg/L的苯酚,偏碱性的条件下比酸性条件更适合细菌生长;培养过程中振荡速率大于120r/m时降解速率最大。当苯酚的初始浓度超过1000mg/L时,降解菌的生长受到抑制,不能有效降解苯酚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号