首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 102 毫秒
1.
The deformation inhomogeneity of flat wires produced with roll drawing process is analyzed. The effect of main process parameters, i.e., initial wire diameter, forming roll dimension and thickness reduction on deformation inhomogeneity is established by means of experimental tests and a developed FE model. Vickers microhardness–strain relationship is developed for the analyzed material (low carbon steel AISI-1010) by correlating the microhardness measurements and effective strain fields as predicted by an axisymmetric numerical model of a compression test. A non-linear finite element model of roll drawing process is developed for a thorough understanding of process parameters effect on deformation inhomogeneity. Thus, in order to encompass the wide range of process conditions, an inhomogeneity index, calculated as the coefficient of variation of effective strain, is used. The numerical results showed that the inhomogeneity factor of flat wires produced with roll drawing is highly dependent on area reduction.  相似文献   

2.
Nanostructured materials are a relatively new class of materials that exhibit advanced mechanical properties, thus improving performance and capabilities of products, with potential applications in the automotive, aerospace and defense industries. Among the severe plastic deformation (SPD) methods currently used for achieving nanoscale structures, accumulative roll bonding (ARB) is the most favorable method to produce grain refinement for continuous production of metallic sheets at a bulk scale.In this article, a model that describes the evolution of material strength due to processing via accumulative roll bonding was developed. ARB experiments were conducted on CP-Ti Grade 2 at a selected set of conditions. The results showed significant grain refinement in the microstructure (down to ~120 nm) and a two-fold increase in tensile strength as compared to the as-received material. The developed model was validated using the experimental data, and exhibited a good fit over the entire range of ARB processing cycles. To further validate the model and ensure its robustness for a wider array of materials (beyond CP-Ti), a review of efforts on ARB processing was carried out for five other materials with different initial microstructures, mechanical properties, and even crystalline structures. The model was still able to capture the strengthening trends in all considered materials.  相似文献   

3.
In the present study, a 2-D finite-element method (FEM) thermal-fluid-stress model has been developed and validated for the twin roll casting (TRC) of AZ31 magnesium alloy. The model was then used to quantify how the thermo-mechanical history experienced by the strip during TRC would change as the equipment was scaled up from a laboratory size (roll diameter = 355 mm) to a pilot scale (roll diameter = 600 mm) and to an industrial scale (roll diameter = 1150 mm) machine. The model predictions showed that the thermal history and solidification cooling rate experienced by the strip are not affected significantly by caster scale-up. However, the mechanical history experienced by the strip did change remarkably depending on the roll diameters. Casting with bigger rolls led to the development of higher stress levels at the strip surface. The roll separating force/mm width of strip was also predicted to increase significantly when the TRC was scaled to larger sizes. Using the model predicted results, the effect of both casting speed and roll diameter was integrated into an empirical equation to predict the exit temperature and the roll separating force for AZ31. Using this approach, a TRC process map was generated for AZ31 which included roll diameter and casting speed.  相似文献   

4.
The dimpling process is a novel cold-roll forming process that involves dimpling of a rolled flat strip prior to the roll forming operation. This is a process undertaken to enhance the material properties and subsequent products’ structural performance while maintaining a minimum strip thickness. In order to understand the complex and interrelated nonlinear changes in contact, geometry and material properties that occur in the process, it is necessary to accurately simulate the process and validate through physical tests. In this paper, 3D non-linear finite element analysis was employed to simulate the dimpling process and mechanical testing of the subsequent dimpled sheets, in which the dimple geometry and material properties data were directly transferred from the dimpling process. Physical measurements, tensile and bending tests on dimpled sheet steel were conducted to evaluate the simulation results. Simulation of the dimpling process identified the amount of non-uniform plastic strain introduced and the manner in which this was distributed through the sheet. The plastic strain resulted in strain hardening which could correlate to the increase in the strength of the dimpled steel when compared to plain steel originating from the same coil material. A parametric study revealed that the amount of plastic strain depends upon on the process parameters such as friction and overlapping gap between the two forming rolls. The results derived from simulations of the tensile and bending tests were in good agreement with the experimental ones. The validation indicates that the finite element analysis was able to successfully simulate the dimpling process and mechanical properties of the subsequent dimpled steel products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号