首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
不同水分管理方式下水稻生长季N_2O排放量估算:模型建立   总被引:5,自引:3,他引:2  
我国水稻生产中往往采用多种水分管理方式,如持续淹水、淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉等. 水分管理方式的不同会引起水稻生长季N2O排放的显著变化. 本研究收集和整理了2005年以前17篇国内外文献报道的有关我国稻田N2O季节排放通量的71组田间原位测定资料,每组资料包括稻田氮肥施用的种类和施用量、水分管理方式、N2O季节排放量等数据,旨在建立不同水分管理方式下水稻生长季N2O直接排放量的估算模型. 分析结果表明,持续淹水稻田N2O季节排放量与施氮量无明显相关关系,在淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉的水分管理方式下,两者呈极显著线性正相关关系. 持续淹水稻田N2O季节排放总量相当于施氮量的0.02%. 基于普通最小二乘法(OLS)分析技术建立的线性回归模型估算结果表明,淹水-烤田-淹水的水分管理方式下稻田肥料氮的N2O排放系数为0.42%,但N2O季节背景排放量不显著. 在淹水-烤田-淹水-湿润灌溉的水分管理方式下,水稻生长季肥料N的N2O排放系数和N2O-N背景排放量分别为0.73%和0.79 kg·hm-2. 残差分析和效能分析显示模型具有较好的适切性. 综合3种水分管理方式,我国稻田水稻生长季N的N2O排放系数和N2O-N背景排放量平均分别为0.54%和0.43 kg·hm-2. 相对于旱作农田而言,水稻生长季肥料N的N2O排放系数较低,意味着水稻生产较旱地作物可能更有利于减缓我国农业N2O排放. 本研究建立的模型可以用于我国稻田水稻生长季N2O直接排放量的估算.  相似文献   

2.
利用2005~2007年我国稻田N2O排放通量的田间原位测定资料和国际上其它地区稻田N2O报道结果,对作者建立的不同水分管理方式下水稻生长季N2O排放估算模型进行了验证. 结果表明,持续淹水稻田N2O排放的拟合结果与其他地区淹水稻田N2O通量值相一致. 淹水-烤田-淹水的水分管理方式下,稻田N2O排放的拟合值接近于国际上同类研究结果. 淹水-烤田-淹水-湿润灌溉的水分管理方式下,稻田N2O排放的估算模型对田间原位测定资料有很好的适切性. 为了检验模型输入参数的可信度,将本研究建立的有关我国水稻生产的相关资料数据库与以往研究报道结果进行了比较,结果表明,两者具有高度的一致性. 数据库资料表明,在20世纪50~70年代间,持续淹水稻田占20%~25%,大约75%~80%的稻田采用淹水-烤田-淹水的水分管理方式. 在20世纪80~90年代间,采用持续淹水,淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉水分管理方式的稻田分别约占12%~16%、 77%和7%~12%. 20世纪50年代水稻生长季平均每季总施氮量为87.49 kg·hm-2,而90年代平均为224.64 kg·hm-2. 其中,化学氮肥的施用量从20世纪50年代的37.4 kg·hm-2增加到了90年代的198.8 kg·hm-2,分别占水稻生长季氮输入总量的43%和88%. 在20世纪50~70年代间有机氮的输入量相对比较稳定,平均变幅在45.2~48.2 kg·hm-2之间,随后逐步降低,有机肥料氮占氮输入总量的比例从20世纪50年代的52%降低到了90年代的9%. 作物残体N输入量从20世纪50年代的4.9 kg·hm-2增加到了80年代的6.3 kg·hm-2. 20世纪50~70年代水稻生长季氮肥施用量具明显的空间变异性,而80~90年代间其空间变异较小. 模型验证和输入参数检验的结果表明,该模型能较好地模拟我国不同水分管理方式下的稻田N2O直接排放量.  相似文献   

3.
不同水分管理方式下水稻生长季N_2O排放量估算:模型应用   总被引:3,自引:0,他引:3  
基于田间原位测定结果,作者建立了不同水分管理方式下稻田N2O排放估算的统计模型.在模型验证和输入参数检验的基础上,本研究应用模型估算了20世纪50~90年代我国稻田水稻生长季N2O直接排放量.结果表明,由于水稻种植面积和氮输入量的增加、以及水分管理方式的变化,稻田N2O-N季节排放量从20世纪50年代平均每年9.55 Gg增加到了90年代每年32.26 Gg,同期伴随着水稻单产的增加.在20世纪50~90年代间,我国水稻生产的N2O-N排放量以平均每10 a 6.74 Gg的速度递增.20世纪50年代和90年代稻田N2O-N季节排放通量平均分别为0.32 kg·hm-2和1.00 kg·hm-2,相当于季节氮输入总量的0.37%和0.46%.本研究模型估算50~90年代间稻田N2O季节排放量的不确定性为59.8%~37.5%.就全国稻田的不同种植区域而言,长江中下游地区稻田水稻生长季N2O排放量占全国稻田N2O排放总量的51%~56%.20世纪90年代水稻生长季N2O排放量约占我国农田N2O年总排放量的8%~11%.相对于旱地作物而言,过去几十年水稻生产的发展在很大程度上减缓了我国农业生产的N2O排放.然而,随着水稻生产中节水灌溉的推广和氮肥施用量的增加,我国稻田N2O季节排放量预计将相应增加.  相似文献   

4.
不同水分管理方式下水稻生长季N2O排放量估算:模型建立   总被引:2,自引:0,他引:2  
我国水稻生产中往往采用多种水分管理方式,如持续淹水、淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉等. 水分管理方式的不同会引起水稻生长季N2O排放的显著变化. 本研究收集和整理了2005年以前17篇国内外文献报道的有关我国稻田N2O季节排放通量的71组田间原位测定资料,每组资料包括稻田氮肥施用的种类和施用量、水分管理方式、N2O季节排放量等数据,旨在建立不同水分管理方式下水稻生长季N2O直接排放量的估算模型. 分析结果表明,持续淹水稻田N2O季节排放量与施氮量无明显相关关系,在淹水-烤田-淹水和淹水-烤田-淹水-湿润灌溉的水分管理方式下,两者呈极显著线性正相关关系. 持续淹水稻田N2O季节排放总量相当于施氮量的0.02%. 基于普通最小二乘法(OLS)分析技术建立的线性回归模型估算结果表明,淹水-烤田-淹水的水分管理方式下稻田肥料氮的N2O排放系数为0.42%,但N2O季节背景排放量不显著. 在淹水-烤田-淹水-湿润灌溉的水分管理方式下,水稻生长季肥料N的N2O排放系数和N2O-N背景排放量分别为0.73%和0.79 kg·hm-2. 残差分析和效能分析显示模型具有较好的适切性. 综合3种水分管理方式,我国稻田水稻生长季N的N2O排放系数和N2O-N背景排放量平均分别为0.54%和0.43 kg·hm-2. 相对于旱作农田而言,水稻生长季肥料N的N2O排放系数较低,意味着水稻生产较旱地作物可能更有利于减缓我国农业N2O排放. 本研究建立的模型可以用于我国稻田水稻生长季N2O直接排放量的估算.  相似文献   

5.
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p〈0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

6.
黄河上游灌区连作稻田N2O排放特征及影响因素   总被引:1,自引:1,他引:0  
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p<0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

7.
不同水分管理方式下水稻生长季N2O排放量估算:模型应用   总被引:1,自引:1,他引:0  
基于田间原位测定结果,作者建立了不同水分管理方式下稻田N2O排放估算的统计模型. 在模型验证和输入参数检验的基础上, 本研究应用模型估算了20世纪50~90年代我国稻田水稻生长季N2O直接排放量. 结果表明, 由于水稻种植面积和氮输入量的增加、以及水分管理方式的变化, 稻田N2O-N季节排放量从20世纪50年代平均每年9.55 Gg增加到了90年代每年32.26 Gg, 同期伴随着水稻单产的增加. 在20世纪50~90年代间, 我国水稻生产的N2O-N排放量以平均每10 a6.74 Gg的速度递增. 20世纪50年代和90年代稻田N2O-N季节排放通量平均分别为0.32 kg·hm-2和1.00 kg·hm-2, 相当于季节氮输入总量的0.37%和0.46%. 本研究模型估算50~90年代间稻田N2O季节排放量的不确定性为59.8%~37.5%. 就全国稻田的不同种植区域而言, 长江中下游地区稻田水稻生长季N2O排放量占全国稻田N2O排放总量的51%~56%. 20世纪90年代水稻生长季N2O排放量约占我国农田N2O年总排放量的8%~11%. 相对于旱地作物而言, 过去几十年水稻生产的发展在很大程度上减缓了我国农业生产的N2O排放. 然而, 随着水稻生产中节水灌溉的推广和氮肥施用量的增加, 我国稻田N2O季节排放量预计将相应增加.  相似文献   

8.
水氮组合模式对双季稻甲烷和氧化亚氮排放的影响   总被引:3,自引:0,他引:3  
傅志强  龙攀  刘依依  钟娟  龙文飞 《环境科学》2015,36(9):3365-3372
为给双季稻水肥高效利用调控技术提供理论基础,设置间歇灌溉和淹水灌溉两种灌溉方式,高氮、中氮、低氮和不施氮这4种施肥方式,开展大田小区试验,探讨了水氮组合模式对双季稻CH4和N2O排放的影响.结果表明,间歇灌溉显著降低了CH4积累排放量,与淹水灌溉相比,早晚稻分别降低13.18~87.90 kg·hm-2和74.48~131.07 kg·hm-2,分别减排了24.4%~67.4%和42.5%~66.5%;但促进了N2O排放,早晚稻的增排量分别为0.03~0.24 kg·hm-2和0.35~1.53 kg·hm-2,分别比淹水灌溉增加6.2%~18.3%和40.2%~80.9%.总体上,间歇灌溉降低了稻田温室气体的增温潜势,其中早稻降低了18.8%~58.6%,晚稻降低34.4%~60.1%,两季综合降低2 388~4 151 kg·hm-2(以CO2eq计),下降41%~54%.通过相关分析发现,土壤CH4排放和土壤溶液Eh显著负相关,和溶液CH4浓度显著正相关.与淹水灌溉相比间歇灌溉模式有利于减排CH4,虽增排了N2O,但增温潜势显著减少.综合来看,间歇灌溉配施中氮更有利于双季稻种植.  相似文献   

9.
水分管理与秸秆施用对稻田CH4和N2O排放的影响   总被引:30,自引:0,他引:30  
2000年6~10月在南京近郊江宁区实施大田试验.主要研究了水稻生长季常规灌溉和连续淹水条件下有机质(小麦秸杆)不同施用量(0,2.25,4.5t/hm2)对稻田CH4和N2O排放的影响.结果表明,在连续淹水条件下,CH4排放量与秸杆施用量成正比,N2O排放与秸杆施用量成反比.烤田的N2O的排放量在施用2.25t/hm2秸杆与对照之间无明显差异,但施用4.5t/hm2秸杆处理其N2O的排放量仅为对照或施用2.25t/hm2秸杆处理下的13%左右.综合考虑水稻生长季CH4和N2O排放的全球增温潜势(GWP),在增加有机质的施用量(如按4.5t/hm2施用量秸杆还田)的情况下,烤田的GWP只占连续淹水处理的60%,是减少稻田CH4和N2O综合温室效应的一种有效措施.  相似文献   

10.
氮肥施用对紫色土-玉米根系系统N2O排放的影响   总被引:10,自引:2,他引:10  
通过不同施氮水平与不同氮肥品种2个田间试验,结合静态箱-气相色谱法研究了川中丘陵区2005年5~9月石灰性紫色土-玉米根系系统的N2O排放变化.结果表明:1)施用氮肥显著地增加了N2O排放,在3个施氮水平下(0、150和250 kg·hm-2),N2O排放总量分别为0.88、2.19和2.52 kg·hm-2;施氮量越高,N2O排放量也越高.当施氮量超过一定水平后,施肥量高低对N2O排放总量的影响并不显著.由氮肥施用引起的N2O排放量占施氮量的0.87%(150 kg·hm-2)和0.66%(250 kg·hm-2).2)氮肥品种显著影响N2O排放,尿素(酰胺态氮肥)和硫酸铵(铵态氮肥)处理的N2O排放量分别为2.09和1.80 kg·hm-2,显著高于硝酸钾(硝态氮肥)处理(1.27 kg·hm-2),三者排放量分别占施氮量的0·80%、0.60%和0.27%.3)降雨是玉米生长季N2O排放的主要影响因子,而无机氮则是影响N2O排放的主要限制因子.  相似文献   

11.
A biogeochemical model(DNDC) is combined with a plant ecological model to estimate N2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiological data and is validated for 1999 and 2000 at a site in the region, which showed that the simulated N2O emissions agree fairly well with the observed data. This adds some confidence in the estimated N2O emissions during 1950 and 2000 in the Hangzhou Region. A significant correlation between the N2O emissions and the population for the Hangzhou Region is found, which is due to a combination of increased application of fertilizers and cultivated area.Such a correlation can not be established for the whole Yangtze River Delta region when the data of both urban and rural are as areincluded. However, when the data from the heavily urbanized areas are excluded, a significant correlation between population and N2O emissions emerges. The results show clearly that both the temporal and the spatial N2O emissions have significant positive relationship with population under traditional farming practice. These results have implications for suitable mitigation options towards a sustainable agriculture and environment in this region.  相似文献   

12.
选择小兴安岭山区毛赤杨(Alnus sibirica)沼泽为研究对象,利用静态暗箱-气相色谱法,研究两个生长季内(2007年和2008年)沼泽湿地在自然状态下CH4、N2O排放通量的变化规律及其主要影响因素,以及在不同采伐干扰(皆伐、45%择伐)方式下,CH4和N2O排放通量的变化过程.结果表明,2007年CH4和N2O平均排放通量分别为1.03 mg·m-2·h-1和58.56μg·m-2·h-1,2008年分别为20.57 mg·m-2·h-1和17.41 μg·m-2·h-1; CH4排放高峰期均发生在夏、秋两季,N2O排放规律不明显.皆伐沼泽和45%择伐沼泽CH4平均排放量分别为597.06、237.05 μg·m-2·h-1,N2O平均排放量分别为35.84、114.51μg·m-2·h-1;与天然沼泽相比,CH4排放量明显下降,N2O排放通量明显升高.水位是CH4排放的主要影响因子,但当水位达到一定高度时不再成为限制因子,土壤温度与CH4排放相关性显著,相对较低水位与相对较高土壤温度有利于N2O排放;积水水位是影响沼泽不同年份CH4和N2O通量排放差异的主要影响因子,采伐引起的土壤温度和水位的变化是干扰地与对照地CH4和N2O排放产生差异的主要原因.  相似文献   

13.
Municipal solid waste landfills emit nitrous oxide(N_2O)gas.Assuming that the soil cover is the primary N_2O source from landfills, this study tested,during a four-year project,the hypothesis that the proper use of chosen soils with fine texture minimizes N_2O emissions.A full-scale sanitary landfill,a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb,at the Hangzhou Tianziling landfill in Hangzhou City were the test sites.The N_2O emission rates from all test sites were considerably lower than those reported in the published reports.Specifically,the N_2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil.The effects of leachate recirculation and irrigation were minimal.Properly chosen cover soils applied to the landfills reduced N_2O flux.  相似文献   

14.
人工湿地污水处理系统中氧化亚氮的释放规律研究   总被引:2,自引:2,他引:0  
吴娟  张建  贾文林  谢慧君  Roy R Gu 《环境科学》2009,30(11):3146-3151
利用静态箱-气相色谱法研究了潜流和表面流人工湿地系统中N2O的释放规律和相关的氨氧化细菌.结果表明,潜流和表面流人工湿地的N2O平均通量分别为296.5μg.(m2.h)-1和28.2μg.(m2.h)-1,总体上均表现为大气N2O的排放源,前者的N2O平均释放通量高于农田、森林、草原和沼泽湿地等生态系统,潜流方式促进了N2O的释放.潜流和表面流人工湿地N2O通量有较大的月份差异和明显的日变化特征,最高值出现在7月,分别为(762.9±239.3)μg.(m2.h)-1和(91.9±20.3)μg.(m2.h)-1,一天中的极大值和极小值分别出现在中午和凌晨.温度和芦苇的生长情况对N2O通量有一定的影响.人工湿地系统进水端,较高浓度的污水和充足的碳、氮源,促进了硝化和反硝化过程,使得N2O通量均高于出水端.克隆结果表明,人工湿地污水处理系统中与N2O产生相关的氨氧化细菌主要为Nitrosomonas和Nitrosospira.  相似文献   

15.
Multi-temporal satellite imagery from the Moderate Resolution Imaging Spectrometer (MODIS) was used to map the different ecosystems of Southeast Asian (SEA) rice paddies. The algorithm was based on temporal profiles of vegetation strength and/or water content, using MODIS surface reflectance in visible to near-IR range. The results obtained from the analysis were compared to national statistics. Estimated SEA regional rice area was 42 × 106 ha, which agrees with published values. The model performance was dependent on rice ecosystems. Good linear relationships between the model results and the national statistics were observed for rainfed rice. High linear coefficients of determination, R2, were also found for irrigated rice and upland rice, but the model tended to underestimate irrigated rice and overestimate upland rice. However, these high R2 values indicated that the model effectively simulated spatial distribution of these rice areas. These R2 values were either of similar magnitude or larger than those reported in literature, regardless of the rice ecosystem. Poor correlation was observed for deepwater rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号