首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
An experimental group of homing pigeons (Columba livia f. domestica) learned to associate food with a magnetic anomaly produced by bar magnets that were fixed to the bowl in which they received their daily food ration in their home loft; the control group lacked this experience. Both groups were trained to search for two hidden food depots in a rectangular sand-filled arena without obvious visual cues; for the experimental birds, these depots were also marked with three 1.15 × 106 μT bar magnets. During the tests, there were two food depots, one marked with the magnets, the other unmarked; their position within the arena was changed from test to test. The experimental birds searched within 10 cm of the magnetically marked depot in 49% of the test sessions, whereas the control birds searched there in only 11% of the sessions. Both groups searched near the control depot in 11 and 13% of the sessions, respectively. The significant preference of the magnetically marked food depot by the experimental birds shows that homing pigeons cannot only detect a magnetic anomaly but can also use it as a cue for locating hidden food in an open arena.  相似文献   

2.
 To verify the existence of a magnetic compass in birds, researchers have often released homing pigeons under overcast skies that are equipped with bar magnets on various parts of their body. In particular, Keeton was successful in finding disorientation in overcast conditions in a first series of tests, but not in a second series. The experiments reported here attempt to explain this contradiction on the basis of findings obtained by releasing pigeons equipped in a way similar to that reported in Keeton's tests and pigeons equipped in a way similar to that reported by other authors. Received: 15 November 1999 / Accepted in revised form: 28 February 2000  相似文献   

3.
Previous experiments on wild rock doves ( Columba l. livia Gmelin) released within their familiar area revealed an evident effect of fast-shifting, although shifted doves, but not controls, tended to orient homeward. Such an outcome suggested a possible influence of the release time per se on the directional choices of the tested doves. In the present study, this hypothesis was investigated by comparing the orientation of slow-shifted birds to that of two control groups released at different times of the day. As would be expected if doves make use of a time-compensated sun compass, the bearings of shifted birds were deflected clockwise with respect to controls. The time of release itself seemed to influence only the scatter of the vanishing bearings of controls. These findings testify to the substantial similarity of clock-shift effects on the initial orientation of rock doves to those on homing pigeons released from familiar sites.  相似文献   

4.
Animals make use of the Earth’s magnetic field for navigation and regulation of vegetative functions; however, the anatomical and physiological basis for the magnetic sense has not been elucidated yet. Our recent results from histology and X-ray analyses support the hypothesis that delicate iron-containing structures in the skin of the upper beak of homing pigeons might serve as a biological magnetometer. Histology has revealed various iron sites within dendrites of the trigeminal nerve, their arrangement along strands of axons, the existence of three dendritic fields in each side of the beak with specific 3D-orientations, and the bilateral symmetry of the whole system. Element mapping by micro-synchrotron X-ray fluorescence analysis has shown the distribution of iron and its quantities. Micro-synchrotron X-ray absorption near-edge-structure spectroscopy has allowed us to unambiguously identify maghemite as the predominating iron mineral (90 vs 10% magnetite). In this paper, we show that iron-based magnetoreception needs the presence of both of these iron minerals, their specific dimensions, shapes, and arrangements in three different subcellular compartments. We suggest that an inherent magnetic enhancement process via an iron-crusted vesicle and the attached chains of iron platelets might be sufficient to account for the sensitivity and specificity required by such a magnetoreceptor. The appropriate alignment between the Earth’s magnetic field and the maghemite bands would induce a multiple attraction of the magnetite bullets perpendicular to the membrane, thus, triggering strain-sensitive membrane channels and a primary receptor potential. Due to its 3D architecture and physicochemical nature, the dendritic system should be able to separately sense the three vector components of the Earth’s local field, simultaneously—allowing birds to detect their geographic position by the magnetic vector, i.e., amplitude and direction of the local magnetic field, irrespective of the animal’s posture or movement and photoreception.  相似文献   

5.
It is thought that young homing pigeons are able to use information acquired en route for their initial homeward orientation. However, the cues involved and mechanisms utilised are under discussion. Blocking light-dependent route-specific information during the first leg of an outward journey detour, together with analysis of pigeons that were raised under different loft conditions, allowed us to correctly evaluate the functioning of this mechanism and, more generally, the navigational map of birds. Pigeons from the same stock were raised and kept in two different lofts. The birds in the experimental groups were transported to the release sites via detours, and light-dependent information was denied during the first half of the outward journey (no compass information was available). Control birds were transported by the most direct route and had access to all available information. In general, the results showed that the low-loft birds preferred to use magnetic compass cues, whereas the high-loft birds preferred to use navigational map cues to collect information of the first part of the outward journey. The impairments observed in the homing performances of the experimental groups highlight the reliability of information collected inside the map area. Relevant to an understanding of the route-reversal mechanism was the evidence that this mechanism is able to function in the absence of compass information (birds raised in a wind-exposed loft show a detour effect). In systems where directional information could be provided by multiple sources, processing and extracting accurate course trajectories through a common mechanism may prove more efficient and reliable.  相似文献   

6.
Wind and sky as compass cues in desert ant navigation   总被引:2,自引:0,他引:2  
While integrating their foraging and homing paths, desert ants, Cataglyphis fortis, depend on external compass cues. Whereas recent research in bees and ants has focused nearly exclusively on the polarization compass, two other compass systems—the sun compass and the wind (anemo) compass—as well as the mutual interactions of all these compass systems have received little attention. In this study, we show that of the two visual compass systems, it is only the polarization compass that invariably outcompetes the wind compass, while the sun compass does so only under certain conditions. If the ants are experimentally deprived of their polarization compass system, but have access simultaneously to both their sun compass and their wind compass, they steer intermediate courses. The intermediate courses shift the more towards the wind compass course, the higher the elevation of the sun is in the sky.  相似文献   

7.
In holometabolous insects, pupation site selection behaviour has large consequences for survival. Here, we investigated the combined effects of temperature and parasitism by the parasitoid Asobara tabida on larval pupation behaviour in two of its main Drosophila sp. hosts differing in their climate origin. We found that larvae of Drosophila melanogaster—a species with a (sub)tropical origin—placed at 25°C pupated higher in rearing jars than those placed at 15°C. The opposite pattern was observed for Drosophila subobscura larvae—a species from temperate regions—which pupated lower, i.e. on or near the substrate at 25°C, than those placed at 15°C. When placed at 25°C, parasitized larvae of both species pupated closer to the substrate than unparasitized ones. Moreover, the Drosophila larvae that had been exposed and probably stung by A. tabida, but were not parasitized, pupated lower than the control unparasitized larvae. These results provide new insights of host behaviour manipulation by A. tabida larvae.  相似文献   

8.
 The GPS recorder consists of a GPS receiver board, a logging facility, an antenna, a power supply, a DC-DC converter and a casing. Currently, it has a weight of 33 g. The recorder works reliably with a sampling rate of 1/s and with an operation time of about 3 h, providing time-indexed data on geographic positions and ground speed. The data are downloaded when the animal is recaptured. Prototypes were tested on homing pigeons. The records of complete flight paths with surprising details illustrate the potential of this new method that can be used on a variety of medium-sized and large vertebrates. Received: 2 February 2000 / Accepted in revised form: 17 April 2000  相似文献   

9.
In contrast to an open environment where a specific celestial cue is predominantly used, visual contrast of canopies against the sky through the gap, known as canopy cues, is known to play a major role for visually guided insect navigators in woodland habitats. In this paper, we investigated whether a subsocial shield bug, Parastrachia japonensis, could gauge direction using canopy cues on a moonless night. The results show that they could perform the round trip foraging behaviour even in an experimental arena with only an artificial round gap opened in the ceiling of the arena and adjust their homing direction for a new azimuth when the gap was rotated. Thus, P. japonensis can use slightly brighter canopy cues as a compass reference but not complex landmarks during nocturnal homing behaviour.  相似文献   

10.
The morphological versatility of the pharyngeal jaw of cichlid fishes is assumed to represent a key factor facilitating their unparalleled trophic diversification and explosive radiation. It is generally believed that the functional design of an organism relates to its ecology, and thus, specializations to different diets are typically associated with distinct morphological designs, especially manifested in the cichlids’ pharyngeal jaw apparatus. Thereby, the lower pharyngeal jaw (LPJ) incorporates some of the most predictive features for distinct diet-related morphotypes. Thus, considering that piscivorous cichlids experience an ontogenetic dietary shift from typically various kinds of invertebrates to fish, concomitant morphological changes in the LPJ are expected. Using Lepidiolamprologus elongatus, a top predator in the shallow rocky habitat of Lake Tanganyika, as model, and applying geometric and traditional morphometric techniques, we demonstrate an allometric change in ontogenetic LPJ shape development coinciding with the completion of the dietary shift toward piscivory. The piscivorous LPJ morphotype is initiated in juvenile fish by increasing elongation and narrowing of the LPJ and—when the fish reach a size of 80–90 mm standard length—further refined by the elongation of the posterior muscular processes, which serve as insertion for the fourth musculus levator externus. The enlarged muscular processes of the fully mature piscivorous morphotype provide for the construction of a powerful lever system, which allows the large individuals to process large prey fish and rely on exclusive piscivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号